高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢制安全壳窄缝内气溶胶冷凝滞留实验研究

王善普 佟立丽 曹学武

王善普, 佟立丽, 曹学武. 钢制安全壳窄缝内气溶胶冷凝滞留实验研究[J]. 核动力工程, 2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128
引用本文: 王善普, 佟立丽, 曹学武. 钢制安全壳窄缝内气溶胶冷凝滞留实验研究[J]. 核动力工程, 2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128
Wang Shanpu, Tong Lili, Cao Xuewu. Experimental Research on Aerosol Condensation and Retention in Narrow Cracks of Steel Containments[J]. Nuclear Power Engineering, 2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128
Citation: Wang Shanpu, Tong Lili, Cao Xuewu. Experimental Research on Aerosol Condensation and Retention in Narrow Cracks of Steel Containments[J]. Nuclear Power Engineering, 2022, 43(6): 128-132. doi: 10.13832/j.jnpe.2022.06.0128

钢制安全壳窄缝内气溶胶冷凝滞留实验研究

doi: 10.13832/j.jnpe.2022.06.0128
基金项目: 国家科技重大专项资助项目(2019ZX06004013)
详细信息
    作者简介:

    王善普(1996—),男,博士研究生,现主要从事核电厂气溶胶研究,E-mail: wspwsp@sjtu.edu.cn

    通讯作者:

    佟立丽,E-mail: lltong@sjtu.edu.cn

  • 中图分类号: TL364.3

Experimental Research on Aerosol Condensation and Retention in Narrow Cracks of Steel Containments

  • 摘要: 目前核电厂安全壳放射性评估中未考虑狭窄裂缝(简称窄缝)对气溶胶的滞留效果,但与常规尺寸相比,窄缝的高表面/体积比对气溶胶泄漏具有可观的滞留,评估结果过于保守。通过开展矩形直通道内气溶胶泄漏实验,获得缝高约100 μm钢制安全壳窄缝内气溶胶滞留效率,观察到窄缝通道入口区域为主要的粒子沉积区域。同时,通过在窄缝流动方向上建立并维持一定的温度梯度,模拟安全壳非能动冷却系统投运时安全壳窄缝内气溶胶泄漏过程。结果表明,窄缝对亚微米粒径气溶胶具有良好的滞留效果,温度梯度引入的蒸汽冷凝能显著提高气溶胶滞留效率至91%左右,且缩小了泄漏面积。

     

  • 图  1  气溶胶窄缝滞留实验装置简图

    T,P—温度、压力测点

    Figure  1.  Schematic Diagram of Experimental Device of Aerosol Narrow Crack Retention

    图  2  实验后窄缝半沉积面的气溶胶粒子沉积分布

    红色椭圆圈出来的区域表示窄缝通道气溶胶粒子沉积集中在通道入口区域       

    Figure  2.  Aerosol Particle Deposition Distribution on Narrow Crack Semi-deposition Surface after Experiment

    图  3  窄缝流动方向上温度分布

    Figure  3.  Temperature Distribution along the Narrow Crack Flow Direction

    图  4  窄缝进/出口气溶胶粒径分布

    Figure  4.  Particle Size Distribution of Aerosols at Narrow Crack Inlet/Outlet

    图  5  窄缝进/出口气溶胶质量浓度及泄漏流量

    Figure  5.  Mass Concentration and Leakage Flow of Aerosols at Narrow Crack Inlet/Outlet

    表  1  事故后安全壳窄缝内气溶胶滞留条件与实验条件对比

    Table  1.   Comparison of Aerosol Retention Conditions and Experimental Conditions in Containment Narrow Crack after Accident

    关键参数事故条件实验条件
    气溶胶泄漏压差/ kPa0~400160
    温度/℃<150130
    浓度/( g·m−3)约为1.00.06~0.25
    质量中值粒径/μm约为1~2<1
    载气空气、水蒸气和氢气空气和水蒸气
    窄缝裂缝深度/μm约为50(弯曲、粗糙)52
    (直、粗糙)
    裂缝尺寸约为 4 mm2
    (等效泄漏面积)
    高=100 μm;
    宽=3×104 μm
    下载: 导出CSV

    表  2  窄缝内气溶胶滞留实验参数及滞留效率

    Table  2.   Experimental Parameters and Retention Efficiency of Aerosols in Narrow Crack

    关键参数工况A工况B
    窄缝高×宽×长/(μm×mm×mm)100×30×52100×30×52
    温度梯度(沿流动方向)/
    (℃·mm−1)
    01
    气溶胶进口压力/kPa260260
    出口压差/kPa120115
    温度/℃130130
    粒子TiO2TiO2
    质量中值粒径/μm~0.9~0.8
    水蒸气摩尔份额00.8
    滞留效率(η±Δη)/%41±1791±3
    下载: 导出CSV
  • [1] TRUPIANO A G. Assessment of basis for aerosol plugging in AP1000 containment leak paths for radiological design bases accidents: Westinghouse non-proprietary class 3[Z]. 2007.
    [2] KANDLIKAR S G. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 389-407. doi: 10.1016/S0894-1777(02)00150-4
    [3] LEWIS S. Solid particle penetration into enclosures[J]. Journal of Hazardous Materials, 1995, 43(3): 195-216. doi: 10.1016/0304-3894(95)00037-U
    [4] MOSLEY R B, GREENWELL D J, SPARKS L E, et al. Penetration of ambient fine particles into the indoor environment[J]. Aerosol Science and Technology, 2001, 34(1): 127-136. doi: 10.1080/02786820117449
    [5] GAUNTT R O, COLE R K, ERICKSON C M, et al. MELCOR computer code manuals, vol. 3: demonstration problems[Z]. 2000.
    [6] PAROZZI F, CHATZIDAKIS S, HOUSIADAS C, et al. Investigation on aerosol transport in containment cracks[C]//International Conference Nuclear Energy for New Europe 2005. Ljubljana: Nuclear Society of Slovenia, 2005.
    [7] TIAN M, GAO H E, HAN X Y, et al. Experimental study on the penetration efficiency of fine aerosols in thin capillaries[J]. Journal of Aerosol Science, 2017, 111: 26-35. doi: 10.1016/j.jaerosci.2017.06.001
    [8] SUJATHA P N, KUMAR A, SEN S, et al. Experimental measurements and theoretical simulation of sodium combustion aerosol leakage through capillaries[J]. Progress in Nuclear Energy, 2020, 118: 103111. doi: 10.1016/j.pnucene.2019.103111
    [9] WATANABE A, YAMADA K, OHSAKI M. FP aerosol trapping effect along the leakage paths of degraded containment penetrations during a severe accident (II): decontamination factor at the containment penetrations and its application to actual plant[J]. Transactions of the Atomic Energy Society of Japan, 2009, 8(4): 332-343. doi: 10.3327/taesj.J08.052
    [10] PAROZZI F, CARACCIOLO E D J, JOURNEAU C, et al. The COLIMA experiment on aerosol retention in containment leak paths under severe nuclear accidents[J]. Nuclear Engineering and Design, 2013, 261: 346-351. doi: 10.1016/j.nucengdes.2012.12.012
    [11] THOMAS GELAIN, JACQUES VENDEL. Research works on contamination transfers through cracked concrete walls[J]. Nuclear Engineering and Design, 2008, 238(4): 1159-1165. doi: 10.1016/j.nucengdes.2007.08.007
    [12] ALLELEIN H J, AUVINEN A, BALL J, et al. State-of-the-art report on nuclear aerosols[Z]. 2009.
    [13] VINCENT J H, GIBSON H. Sampling errors in blunt dust samplers arising from external wall loss effects[J]. Atmospheric Environment (1967), 1981, 15(5): 703-712. doi: 10.1016/0004-6981(81)90274-2
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  66
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2022-01-15
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回