Research on Active Disturbance Rejection Control of Once-through Steam Generator
-
摘要: 直流蒸汽发生器(OTSG)水容量小,蓄热能力小,其数学模型具有不确定性和非线性的特征,在存在扰动及负荷变化时,蒸汽压力会出现较大波动,对系统设备产生不利影响。常规比例-积分-微分(PID)控制存在超调、抗扰动性能差等问题,难以满足系统性能需求。针对上述问题,本文使用自抗扰控制器(ADRC)对OTSG的蒸汽压力进行控制。但由于ADRC待整定参数较多,调节比较困难,本文对混合蛙跳算法(SFLA)进行改进优化,用于ADRC参数的整定寻优,并建立仿真模型进行仿真试验研究。结果表明:采用改进SFLA进行参数自整定的ADRC能够实现对OTSG快速无超调的跟踪控制,减小了蒸汽压力的控制误差,并具有良好的抗扰动能力。
-
关键词:
- 直流蒸汽发生器(OTSG) /
- 自抗扰控制 /
- 参数整定 /
- 比例-积分-微分(PID) /
- 混合蛙跳算法(SFLA)
Abstract: The once-through steam generator (OTSG) has small water capacity and heat storage capacity, and its mathematical model is uncertain and nonlinear. When there are disturbances and load changes, the steam pressure fluctuates greatly, which adversely affects the system equipment. The conventional proportional-integral-derivative (PID) control has some disadvantages, such as overshoot, poor anti-disturbance performance, etc., which is difficult to meet the system performance requirements. To solve the above problems, the active disturbance rejection control (ADRC) is used to control the steam pressure of OTSG. However, because there are many parameters to be tuned in ADRC, the shuffled frog-leaping algorithm (SFLA) is improved and optimized in this paper, which is used to optimize the parameters of ADRC, and a simulation model is established for simulation test. The results show that the ADRC with improved SFLA for parameter self-tuning can realize fast tracking control of OTSG without overshoot, reduce the control error of steam pressure, and has good anti-disturbance ability. -
-
[1] 刘勇,段天英,张玮瑛. 示范快堆直流式蒸汽发生器给水控制系统仿真研究[J]. 仪器仪表用户,2019, 26(5): 73-77. doi: 10.3969/j.issn.1671-1041.2019.05.020 [2] 孙家文,张齐文,孙永哲,等. 基于混沌鲸鱼算法的自抗扰永磁同步电机控制[J]. 内燃机与配件,2021(12): 84-86. doi: 10.3969/j.issn.1674-957X.2021.12.037 [3] 张月,郑明光,马志才,等. 螺旋管式直流蒸汽发生器建模仿真与控制[J]. 应用科技,2020, 47(6): 71-77. [4] 柴素娟, 李东海, 姚小兰. 高阶系统的自抗扰控制[C]//中国自动化学会控制理论专业委员会D卷. 烟台: 中国自动化学会控制理论专业委员会, 2011: 5. [5] 朱斌. 自抗扰控制入门[M]. 北京: 北京航空航天大学出版社, 2017: 32-33. [6] 石晓洁,蔡家斌,宋建,等. 风干扰下无人机自抗扰控制参数自整定[J]. 组合机床与自动化加工技术,2021(6): 67-71. doi: 10.13462/j.cnki.mmtamt.2021.06.016 [7] EUSUFF M, LANSEY K, PASHA F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38(2): 129-154. doi: 10.1080/03052150500384759 [8] 崔文华,刘晓冰,王伟,等. 混合蛙跳算法研究综述[J]. 控制与决策,2012, 27(4): 481-486,493. doi: 10.13195/j.cd.2012.04.3.cuiwh.014