Verification and Research of LBB Pipe Crack Leakage Rate Calculation Software PICLES
-
摘要: 管道裂纹泄漏率计算是破前漏(LBB)分析中的关键技术,采用与有效软件进行对比和与实验结果进行对比的方式,对国内自主研发的泄漏率计算软件PICLES进行验证研究。与已有成熟工程应用的国际同类软件(PICEP和SI-PICEP)对比,PICLES与其计算结果相差较小;与管道裂纹泄漏率实验结果对比,PICLES计算出的泄漏率与其相差−80.23%~−43.79%,PICLES计算的泄漏裂纹长度与实测裂纹长度相差21.84%~79.07%,说明将PICLES用于过冷水管道LBB分析具有较高的保守性。因此,PICLES可用于实际工程中的LBB分析。Abstract: The calculation of pipe crack leakage rate is the key technology in leak-before-break (LBB) analysis. By comparing with the effective software and the experimental results, the domestic independently developed leakage rate calculation software PICLES is verified and studied. Compared with the international similar software (PICEP and SI-PICEP) with mature engineering applications, there is a small difference between PICLES and its calculation results. Compared with the experimental results of pipe crack leakage rate, the leakage rate calculated by PICLES is −80.23%~−43.79% different from that calculated by PICLES, and the leakage crack length calculated by PICLES is 21.84%~79.07% different from the measured crack length, which shows that the LBB analysis of supercooled water pipeline using PICLES is highly conservative. Therefore, PICLES can be used for LBB analysis in practical projects.
-
Key words:
- LBB /
- PICLES /
- Comparative verification /
- Crack length /
- Leakage rate /
- PICEP /
- SI-PICEP
-
表 1 PICEP 6个算例的基本情况
Table 1. Basic Situation of 6 Calculation Examples of PICEP
编号 外径/mm 壁厚/mm 裂纹方向 裂纹类型 流体类型 算例1 114.300 8.560 轴向 晶间应力腐蚀裂纹 过冷水 算例2 19.050 1.219 轴向 晶间应力腐蚀裂纹 过冷水 算例3 711.200 31.750 环向 晶间应力腐蚀裂纹 过冷水 算例4 88.900 11.100 环向 疲劳裂纹 过冷水 算例5 860.958 47.625 环向 疲劳裂纹 过热蒸汽 算例7 306.705 16.501 环向 腐蚀裂纹 过冷水 表 2 PICLES与PICEP算例计算结果对比
Table 2. Comparison between the Calculation Results of PICLES and PICEP Calculation Examples
编号 COD/mm 泄漏率/(10−3m3·s−1) PICLES PICEP 相差百
分比/%PICLES PICEP 相差百
分比/%算例1 0.3004 0.3302 −9.03 0.4237 0.4675 −9.37 算例2 0.0683 0.0545 25.26 0.0216 0.0188 15.09 算例3 0.0635 0.0683 0.0685 −0.20 算例4 0.5462 0.5462 0.01 3.0950 2.7780 11.41 算例5 33.0800 33.1176 −0.11 127.9000 128.3158 −0.32 算例7 0.4396 0.4259 3.21 0.8302 0.8041 3.25 表 3 实验结果
Table 3. Experimental Results
实验件编号 裂纹长度/mm 工况编号 温度/℃ 压力/MPa 外载/N COD/mm 质量泄漏率/(kg·h−1) 外表面 内表面 1 30 28 1 278.1 8.10 14448 0.068 29.521 2 280.0 10.10 12657 0.070 35.555 3 274.8 12.07 13838 0.095 67.653 4 277.6 13.84 13411 0.105 86.613 5 281.1 15.05 13288 0.119 121.170 2 50 36 1 278.0 7.85 15967 0.078 46.162 2 277.5 10.06 14515 0.082 59.296 3 271.0 12.07 11673 0.117 131.037 4 276.3 13.72 10037 0.130 177.530 5 275.4 15.00 9947 0.138 218.713 3 70 49 1 276.2 8.91 7986 0.133 193.477 2 280.0 10.05 7896 0.144 235.258 3 276.0 12.04 8661 0.148 294.702 4 270.1 13.73 5090 0.151 327.362 5 271.0 14.89 7838 0.181 646.610 外载—千斤顶所施加的载荷 表 4 COD和泄漏率的计算值与实验值对比
Table 4. Comparison between Calculated Values of COD and Leakage Rate and Experimental Values
实验件编号 裂纹长度/mm 工况编号 裂纹处内力 COD/mm 体积泄漏率/(10−6m3·s−1) 轴力/N 弯矩/(N·m) 计算值 实验值 相差百分比/% 计算值 实验值 相差百分比/% 1 29 1 8846.8 4946.2 0.017 0.066 −74.53 1.68 8.51 −80.23 2 8962.1 4795.1 0.019 0.068 −72.23 2.96 10.26 −71.11 3 8741.8 4840.6 0.021 0.092 −76.76 4.82 19.51 −75.30 4 8854.0 4836.3 0.024 0.102 −76.40 6.10 24.98 −75.58 5 8986.3 4872.6 0.026 0.115 −77.37 7.15 34.95 −79.53 2 43 1 8805.5 5095.6 0.027 0.067 −60.47 4.71 13.31 −64.64 2 8822.4 4944.3 0.030 0.071 −57.26 9.61 17.10 −43.79 3 8653.3 4572.3 0.033 0.101 −67.11 13.41 37.79 −64.52 4 8889.4 4483.4 0.037 0.112 −67.01 16.68 51.20 −67.42 5 8857.6 4461.7 0.040 0.119 −66.12 19.86 63.08 −68.52 3 59.5 1 8934.4 4277.6 0.038 0.113 −66.78 15.43 55.80 −72.35 2 9077.8 4321.8 0.041 0.122 −66.49 21.02 67.86 −69.02 3 8912.7 4342.8 0.048 0.126 −62.03 32.39 85.00 −61.89 4 8780.3 3905.2 0.052 0.128 −59.17 39.81 94.42 −57.84 5 8746.5 4190.9 0.058 0.154 −62.05 48.54 186.50 −73.97 表 5 COD和裂纹长度的计算值与实验值对比
Table 5. Comparison between Calculated Values of COD and Crack Length and Experimental Values
实验件编号 工况编号 裂纹处内力 COD/mm 裂纹长度/mm 轴力/N 弯矩/(N·m) 计算值 实验值 相差百分比/% 计算值 实验值 相差百分比/% 1 1 8846.8 4946.2 0.034 0.066 −48.99 51.93 29.0 79.07 2 8962.1 4795.1 0.032 0.068 −53.00 45.28 56.14 3 8741.8 4840.6 0.040 0.092 −56.75 48.67 67.83 4 8854.0 4836.3 0.045 0.102 −55.84 48.70 67.93 5 8986.3 4872.6 0.053 0.115 −54.02 51.71 78.31 2 1 8805.5 5095.6 0.042 0.067 −37.55 61.50 43.0
43.02 2 8822.4 4944.3 0.039 0.071 −45.24 52.39 21.84 3 8653.3 4572.3 0.053 0.101 −47.11 61.85 43.84 4 8889.4 4483.4 0.062 0.112 −44.64 63.49 47.65 5 8857.6 4461.7 0.069 0.119 −42.21 63.98 48.79 3 1 8934.4 4277.6 0.070 0.113 −38.41 87.34 59.5
46.79 2 9077.8 4321.8 0.072 0.122 −41.33 83.97 41.13 3 8912.7 4342.8 0.076 0.126 −39.28 79.63 33.83 4 8780.3 3905.2 0.078 0.128 −39.10 76.45 28.49 5 8746.5 4190.9 0.105 0.154 −31.56 85.31 43.38 -
[1] 周胜,张征明. 破前漏分析中泄漏率模型研究进展[J]. 原子能科学技术,2009, 43(S1): 84-91. [2] NORRIS D M, CHEXAL B. PICEP: pipe crack evaluation program (Revision 1): special report: EPRI-NP-3596-SR-Rev. 1[R]. Palo Alto: EPRI, 1987. [3] PAUL D D, AHMAD J, SCOTT P M, et al. Evaluation and refinement of leak-rate estimation models: NUREG/CR-5128[R]. Washington: Nuclear Regulatory Commission, 1991. [4] 吴万军,谢海,兰彬,等. 管道裂纹泄漏率计算软件开发[J]. 核动力工程,2015, 36(4): 65-68. doi: 10.13832/j.jnpe.2015.04.0065 [5] 彭常宏,郭赟,李浩,等. 管道穿透裂纹泄漏率计算程序[J]. 核动力工程,2003, 24(6): 505-507,554. doi: 10.3969/j.issn.0258-0926.2003.06.003 [6] U. S. Nuclear Regulatory Commission. Standard review plan 3.9. 1 special topics for mechanical components: NUREG-0800[S]. Washington: U. S. Nuclear Regulatory Commission, 2007. [7] U. S. Nuclear Regulatory Commission. Evaluation of potential for pipe breaks: NUREG-1061[S]. Washington: U. S. Nuclear Regulatory Commission, 1984. [8] U. S. Nuclear Regulatory Commission. Standard review plan 3.6. 3 Leak-before-break evaluation procedures: NUREG-0800[S]. Washington: U. S. Nuclear Regulatory Commission, 2007. [9] 吴万军,黄旋,沈平川. 管道裂纹泄漏率计算方法研究[J]. 核动力工程,2015, 36(S2): 122-126. doi: 10.13832/j.jnpe.2015.S2.0122