高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态铅铋合金回路氧输运特性的数值研究

梁瑞仙 杨凌峰 王译锋 李小波 牛风雷

梁瑞仙, 杨凌峰, 王译锋, 李小波, 牛风雷. 液态铅铋合金回路氧输运特性的数值研究[J]. 核动力工程, 2022, 43(6): 187-194. doi: 10.13832/j.jnpe.2022.06.0187
引用本文: 梁瑞仙, 杨凌峰, 王译锋, 李小波, 牛风雷. 液态铅铋合金回路氧输运特性的数值研究[J]. 核动力工程, 2022, 43(6): 187-194. doi: 10.13832/j.jnpe.2022.06.0187
Liang Ruixian, Yang Lingfeng, Wang Yifeng, Li Xiaobo, Niu Fenglei. Numerical Study on Oxygen Transport Characteristics in Liquid Lead-Bismuth Eutectic Circuit[J]. Nuclear Power Engineering, 2022, 43(6): 187-194. doi: 10.13832/j.jnpe.2022.06.0187
Citation: Liang Ruixian, Yang Lingfeng, Wang Yifeng, Li Xiaobo, Niu Fenglei. Numerical Study on Oxygen Transport Characteristics in Liquid Lead-Bismuth Eutectic Circuit[J]. Nuclear Power Engineering, 2022, 43(6): 187-194. doi: 10.13832/j.jnpe.2022.06.0187

液态铅铋合金回路氧输运特性的数值研究

doi: 10.13832/j.jnpe.2022.06.0187
基金项目: 国家自然科学基金项目(12027813);国家重点研发计划(2019YFB1901301)
详细信息
    作者简介:

    梁瑞仙(1994—),男,博士研究生,主要研究液态LBE应用技术,Email: liangruixian@ncepu.edu.cn

  • 中图分类号: TL334

Numerical Study on Oxygen Transport Characteristics in Liquid Lead-Bismuth Eutectic Circuit

  • 摘要: 为研究液态铅铋合金(LBE)冷却剂系统气态氧控装置——膨胀箱中覆盖气体的氧输运特性,利用计算流体动力学(CFD)软件ANSYS Fluent对氧输运进行了数值计算。根据覆盖气体流动特性和混合气体中低氧分压特点,对膨胀箱气相空间进行简化,将气-液交界面视为氧浓度恒定的自由表面边界,采用组分输运模型计算气体和液态LBE之间传质后的液态LBE氧浓度。结果表明,传质系数随液态LBE入口流速增大而增大,液态LBE入口流速增大则膨胀箱内气-液对流强度增加,有利于增强膨胀箱的氧输运;膨胀箱中液态LBE温度越高,则氧输运的平均传质系数越大;在液态LBE入口流速一定时,平均传质系数可表示为温度的递增函数。在饱和氧浓度阈值内,入口氧浓度和气-液交界面氧浓度不影响膨胀箱的传质系数,对液态LBE回路的氧浓度控制有利。本研究定量获得了使液态LBE回路处于合理氧浓度范围内的操作条件,为实验及系统设计提供数据参考。

     

  • 图  1  液态LBE回路设计图

    Figure  1.  Liquid LBE Circuit Design Diagram

    图  2  扩散模型验证结果

    Figure  2.  Validation Results of Diffusion Model

    图  3  液态LBE冷却剂系统氧浓度合理区间及部分模拟结果     

    Cout—平均出口氧浓度

    Figure  3.  Reasonable Range of Oxygen Concentration in Liquid LBE Coolant System and Some Simulation Results

    图  4  平均传质系数随膨胀箱液态LBE入口流速变化

    Figure  4.  Change of Average Mass Transfer Coefficient with Liquid LBE Inlet Velocity of Expansion Tank

    图  5  平均传质系数随液态LBE温度变化

    Figure  5.  Change of Average Mass Transfer Coefficient with Liquid LBE Temperature

    图  6  液态LBE温度为600℃下平均传质系数随入口氧浓度的变化

    Figure  6.  Change of Average Mass Transfer Coefficient with Inlet Oxygen Concentration at Liquid LBE Temperature of 600℃

    图  7  液态LBE温度为400℃下平均传质系数随气-液交界面氧浓度变化

    Figure  7.  Change of Average Mass Transfer Coefficient with Oxygen Concentration of Gas-Liquid Interface at Liquid LBE Temperature of 400℃

    表  1  模拟计算矩阵

    Table  1.   Simulation of Calculation Matrix

    物性参数 参数值
    液态LBE温度/℃ 300、350、400、450、500、550、600
    回路膨胀箱液态LBE
    入口流速 /(m·s−1)
    0.2、0.3、0.4、0.5、0.6
    入口平均氧浓度/% 1.0×10−9、1.0×10−10、1.0×10−11
    气-液交界面氧浓度/% 1.0×10−6、5.0×10−6、1.0×10−5、2.0×10−5、5.0×10−5、1.0×10−4
    下载: 导出CSV
  • [1] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2015 edition - introduction[M]. Paris: OECD, 2015: 17-27.
    [2] NIU F L, CANDALINO R, NING L. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
    [3] TZANOS C P, SIENICKI J J, MOISSEYTSEV A, et al. Interim status report on lead-cooled fast reactor (LFR) research and development: ANL-GenIV-101[R]. Argonne: Argonne National Lab., 2008.
    [4] 戎利建, 张玉妥, 陆善平, 等. 铅与铅铋共晶合金手册[M]. 北京: 科学出版社, 2014: 511-513.
    [5] NAM H O, LIM J, HAN D Y, et al. Dissolved oxygen control and monitoring implementation in the liquid lead-bismuth eutectic loop: HELIOS[J]. Journal of Nuclear Materials, 2008, 376(3): 381-385. doi: 10.1016/j.jnucmat.2008.02.038
    [6] RAO V S, LIM J, HWANG I S. Analysis of 316L stainless steel pipe of lead–bismuth eutectic cooled thermo-hydraulic loop[J]. Annals of Nuclear Energy, 2012, 48: 40-44. doi: 10.1016/j.anucene.2012.05.009
    [7] SCHROER C, WEDEMEYER O, NOVOTNY J, et al. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550℃, and 10−6 mass% dissolved oxygen[J]. Nuclear Engineering and Design, 2014, 280: 661-672. doi: 10.1016/j.nucengdes.2014.01.023
    [8] BRISSONNEAU L, BEAUCHAMP F, MORIER O, et al. Oxygen control systems and impurity purification in LBE: learning from DEMETRA project[J]. Journal of Nuclear Materials, 2011, 415(3): 348-360. doi: 10.1016/j.jnucmat.2011.04.040
    [9] MARTINELLI L, JEAN-LOUIS C, FANNY B C. Oxidation of steels in liquid lead bismuth: oxygen control to achieve efficient corrosion protection[J]. Nuclear Engineering and Design, 2011, 241(5): 1288-1294. doi: 10.1016/j.nucengdes.2010.07.039
    [10] KONDO M, TAKAHASHI M. Corrosion resistance of Si- and Al-rich steels in flowing lead-bismuth[J]. Journal of Nuclear Materials, 2006, 356(1-3): 203-212. doi: 10.1016/j.jnucmat.2006.05.019
    [11] 张敏. 液态铅铋合金气相氧控关键影响因素研究[D]. 合肥: 中国科学技术大学, 2013.
    [12] UPADHYAYA G S, DUBE R K. Problems in metallurgical thermodynamics and kinetics[M]. Oxford: Pergamon Press, 1977: 144-184.
    [13] LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
    [14] CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Oxford University Press, 1975: 44-65.
    [15] ANSYS, Inc.. ANSYS fluent theory guide 19.1[M]. U.S.A: ANSYS, Inc., 2018: 195-197.
    [16] MÜLLER G, HEINZEL A, SCHUMACHER G, et al. Control of oxygen concentration in liquid lead and lead-bismuth[J]. Journal of Nuclear Materials, 2003, 321(2-3): 256-262. doi: 10.1016/S0022-3115(03)00250-2
    [17] SHMATKO B A, RUSANOV A E. Oxide protection of materials in melts of lead and bismuth[J]. Materials Science, 2000, 36(5): 689-700. doi: 10.1023/A:1011307907891
    [18] STÉPHANE GOSSÉ. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic[J]. Journal of Nuclear Materials, 2014, 449(1-3):122-131.
    [19] HASEGAWA M. Ellingham diagram[M]. SEETHARAMAN S. Treatise on Process Metallurgy. Amsterdam: Elsevier, 2014: 507-516.
    [20] COUROUAU J L, ROBIN J C. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target[J]. Journal of Nuclear Materials, 2004, 335(2): 264-269. doi: 10.1016/j.jnucmat.2004.07.022
    [21] ADDISON C C. The chemistry of the liquid alkali metals[M]. New York: Wiley, 1984: 311-330.
    [22] COUROUAU J L, DELOFFRE P, ADRIANO R. Oxygen control in lead-bismuth eutectic: first validation of electrochemical oxygen sensors in static conditions[J]. Journal de Physique IV, 2002, 12(8): 141-153.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  53
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-06-08
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回