Numerical Study on Oxygen Transport Characteristics in Liquid Lead-Bismuth Eutectic Circuit
-
摘要: 为研究液态铅铋合金(LBE)冷却剂系统气态氧控装置——膨胀箱中覆盖气体的氧输运特性,利用计算流体动力学(CFD)软件ANSYS Fluent对氧输运进行了数值计算。根据覆盖气体流动特性和混合气体中低氧分压特点,对膨胀箱气相空间进行简化,将气-液交界面视为氧浓度恒定的自由表面边界,采用组分输运模型计算气体和液态LBE之间传质后的液态LBE氧浓度。结果表明,传质系数随液态LBE入口流速增大而增大,液态LBE入口流速增大则膨胀箱内气-液对流强度增加,有利于增强膨胀箱的氧输运;膨胀箱中液态LBE温度越高,则氧输运的平均传质系数越大;在液态LBE入口流速一定时,平均传质系数可表示为温度的递增函数。在饱和氧浓度阈值内,入口氧浓度和气-液交界面氧浓度不影响膨胀箱的传质系数,对液态LBE回路的氧浓度控制有利。本研究定量获得了使液态LBE回路处于合理氧浓度范围内的操作条件,为实验及系统设计提供数据参考。
-
关键词:
- 液态铅铋合金(LBE) /
- 氧输运 /
- 气态氧控 /
- 计算流体动力学(CFD) /
- 组分输运模型
Abstract: In order to study the oxygen transport characteristics of the cover gas in a gaseous oxygen control device of liquid lead-bismuth eutectic (LBE) coolant system--expansion tank, the numerical calculation of oxygen transport was carried out by ANSYS Fluent software using computational fluid dynamics (CFD). According to the flow characteristics of the cover gas and the characteristics of low oxygen partial pressure in the gas mixture, the gas-phase space of expansion tank was simplified, the gas-liquid interface was regarded as the free surface boundary with constant oxygen concentration, and the oxygen concentration in liquid LBE after mass transfer between gas and liquid LBE was calculated by component transport model. The results show that the mass transfer coefficient increases with the increase of liquid LBE inlet velocity. When the inlet velocity of liquid LBE increases, the intensity of gas-liquid convection in the expansion tank increases, which is beneficial to enhance the oxygen transport in the expansion tank. The higher the LBE temperature in the expansion tank, the greater the average mass transfer coefficient of oxygen transport. When the liquid LBE inlet velocity is constant, the average mass transfer coefficient can be expressed as an increasing function of temperature. Within the saturated oxygen concentration threshold, the inlet oxygen concentration and the oxygen concentration at the gas-liquid interface do not affect the mass transfer coefficient of the expansion tank, which is beneficial for oxygen concentration control of liquid LBE circuit. In this study, the operating conditions for the liquid LBE circuit to be in a reasonable range of oxygen concentration were obtained quantitatively, which provided data reference for experiment and system design. -
表 1 模拟计算矩阵
Table 1. Simulation of Calculation Matrix
物性参数 参数值 液态LBE温度/℃ 300、350、400、450、500、550、600 回路膨胀箱液态LBE
入口流速 /(m·s−1)0.2、0.3、0.4、0.5、0.6 入口平均氧浓度/% 1.0×10−9、1.0×10−10、1.0×10−11 气-液交界面氧浓度/% 1.0×10−6、5.0×10−6、1.0×10−5、2.0×10−5、5.0×10−5、1.0×10−4 -
[1] FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies: 2015 edition - introduction[M]. Paris: OECD, 2015: 17-27. [2] NIU F L, CANDALINO R, NING L. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223 [3] TZANOS C P, SIENICKI J J, MOISSEYTSEV A, et al. Interim status report on lead-cooled fast reactor (LFR) research and development: ANL-GenIV-101[R]. Argonne: Argonne National Lab., 2008. [4] 戎利建, 张玉妥, 陆善平, 等. 铅与铅铋共晶合金手册[M]. 北京: 科学出版社, 2014: 511-513. [5] NAM H O, LIM J, HAN D Y, et al. Dissolved oxygen control and monitoring implementation in the liquid lead-bismuth eutectic loop: HELIOS[J]. Journal of Nuclear Materials, 2008, 376(3): 381-385. doi: 10.1016/j.jnucmat.2008.02.038 [6] RAO V S, LIM J, HWANG I S. Analysis of 316L stainless steel pipe of lead–bismuth eutectic cooled thermo-hydraulic loop[J]. Annals of Nuclear Energy, 2012, 48: 40-44. doi: 10.1016/j.anucene.2012.05.009 [7] SCHROER C, WEDEMEYER O, NOVOTNY J, et al. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550℃, and 10−6 mass% dissolved oxygen[J]. Nuclear Engineering and Design, 2014, 280: 661-672. doi: 10.1016/j.nucengdes.2014.01.023 [8] BRISSONNEAU L, BEAUCHAMP F, MORIER O, et al. Oxygen control systems and impurity purification in LBE: learning from DEMETRA project[J]. Journal of Nuclear Materials, 2011, 415(3): 348-360. doi: 10.1016/j.jnucmat.2011.04.040 [9] MARTINELLI L, JEAN-LOUIS C, FANNY B C. Oxidation of steels in liquid lead bismuth: oxygen control to achieve efficient corrosion protection[J]. Nuclear Engineering and Design, 2011, 241(5): 1288-1294. doi: 10.1016/j.nucengdes.2010.07.039 [10] KONDO M, TAKAHASHI M. Corrosion resistance of Si- and Al-rich steels in flowing lead-bismuth[J]. Journal of Nuclear Materials, 2006, 356(1-3): 203-212. doi: 10.1016/j.jnucmat.2006.05.019 [11] 张敏. 液态铅铋合金气相氧控关键影响因素研究[D]. 合肥: 中国科学技术大学, 2013. [12] UPADHYAYA G S, DUBE R K. Problems in metallurgical thermodynamics and kinetics[M]. Oxford: Pergamon Press, 1977: 144-184. [13] LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9 [14] CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Oxford University Press, 1975: 44-65. [15] ANSYS, Inc.. ANSYS fluent theory guide 19.1[M]. U.S.A: ANSYS, Inc., 2018: 195-197. [16] MÜLLER G, HEINZEL A, SCHUMACHER G, et al. Control of oxygen concentration in liquid lead and lead-bismuth[J]. Journal of Nuclear Materials, 2003, 321(2-3): 256-262. doi: 10.1016/S0022-3115(03)00250-2 [17] SHMATKO B A, RUSANOV A E. Oxide protection of materials in melts of lead and bismuth[J]. Materials Science, 2000, 36(5): 689-700. doi: 10.1023/A:1011307907891 [18] STÉPHANE GOSSÉ. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic[J]. Journal of Nuclear Materials, 2014, 449(1-3):122-131. [19] HASEGAWA M. Ellingham diagram[M]. SEETHARAMAN S. Treatise on Process Metallurgy. Amsterdam: Elsevier, 2014: 507-516. [20] COUROUAU J L, ROBIN J C. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target[J]. Journal of Nuclear Materials, 2004, 335(2): 264-269. doi: 10.1016/j.jnucmat.2004.07.022 [21] ADDISON C C. The chemistry of the liquid alkali metals[M]. New York: Wiley, 1984: 311-330. [22] COUROUAU J L, DELOFFRE P, ADRIANO R. Oxygen control in lead-bismuth eutectic: first validation of electrochemical oxygen sensors in static conditions[J]. Journal de Physique IV, 2002, 12(8): 141-153.