高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-67对模拟废水中Co(Ⅱ)和Mn(Ⅱ)的吸附研究

周义朋 门金凤 王晓伟 杜志辉 梁成强 贾铭椿

周义朋, 门金凤, 王晓伟, 杜志辉, 梁成强, 贾铭椿. ZIF-67对模拟废水中Co(Ⅱ)和Mn(Ⅱ)的吸附研究[J]. 核动力工程, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209
引用本文: 周义朋, 门金凤, 王晓伟, 杜志辉, 梁成强, 贾铭椿. ZIF-67对模拟废水中Co(Ⅱ)和Mn(Ⅱ)的吸附研究[J]. 核动力工程, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209
Zhou Yipeng, Men Jinfeng, Wang Xiaowei, Du Zhihui, Liang Chengqiang, Jia Mingchun. Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67[J]. Nuclear Power Engineering, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209
Citation: Zhou Yipeng, Men Jinfeng, Wang Xiaowei, Du Zhihui, Liang Chengqiang, Jia Mingchun. Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67[J]. Nuclear Power Engineering, 2022, 43(6): 209-216. doi: 10.13832/j.jnpe.2022.06.0209

ZIF-67对模拟废水中Co(Ⅱ)和Mn(Ⅱ)的吸附研究

doi: 10.13832/j.jnpe.2022.06.0209
基金项目: 国家自然科学基金(51573208)
详细信息
    作者简介:

    周义朋(1996—),男,博士研究生,现主要从事放射性废液处理方面的研究,E-mail: 15926279722@139.com

    通讯作者:

    门金凤,E-mail: mjfmoon2001@sina.com

  • 中图分类号: TL941

Study on the Adsorption of Co(Ⅱ) and Mn(Ⅱ) in Simulated Wastewater by ZIF-67

  • 摘要: 为开发出对放射性废液中长寿期活化产物具有高效选择性的吸附剂,在室温下制备了金属-有机框架(MOFs)材料ZIF-67,并对该材料进行了热稳定性测试以及结构的表征。首次考察了初始pH值、吸附时间和溶液初始浓度等因素对ZIF-67吸附Co(Ⅱ)和Mn(Ⅱ)的影响。结果表明:ZIF-67属于微孔材料,具有良好的水热稳定性。在pH为6.0、温度为30℃、初始浓度为500 mg/L的条件下,ZIF-67对Co(Ⅱ)和Mn(Ⅱ)的饱和吸附容量分别达到305.63 mg/g和197.43 mg/g。ZIF-67在混合金属离子溶液中对Co(Ⅱ)、Mn(Ⅱ)和Ni(Ⅱ)具有良好的选择吸附性能。因此,ZIF-67在实际放射性废液中活化产物的处理中有良好的应用前景。

     

  • 图  1  ZIF-67样品的SEM图像

    Figure  1.  SEM Image of ZIF-67 Sample

    图  2  ZIF-67的TGA测试曲线

    Figure  2.  TGA Test Curve of ZIF-67

    图  3  ZIF-67的氮气吸附-脱附等温线

    Figure  3.  N2 Adsorption-desorption Isotherm of ZIF-67

    图  4  ZIF-67的孔径分布

    Figure  4.  Pore Diameter Distribution of ZIF-67

    图  5  ZIF-67吸附前后的XRD谱

    Figure  5.  XRD Patterns of ZIF-67 Before and After Adsorption      

    图  6  溶液初始pH值对吸附容量的影响

    Figure  6.  Effect of Initial Solution pH Values on Adsorption Capacity

    图  7  吸附时间对ZIF-67吸附容量的影响

    Figure  7.  Effect of Adsorption Time on Adsorption Capacity of ZIF-67

    图  8  溶液初始浓度对ZIF-67吸附容量的影响

    Figure  8.  Effect of Initial Solution Concentrations on Adsorption Capacity of ZIF-67

    图  9  ZIF-67对不同金属离子的吸附容量比较

    Figure  9.  Comparison of Adsorption Capacity of ZIF-67 for Different Metal Ions

    图  10  ZIF-67对Co(Ⅱ)和Mn(Ⅱ)的分离系数RL

    Figure  10.  Separation Coefficient RL for Co(Ⅱ) and Mn(Ⅱ) on ZIF-67

    表  1  动力学模型拟合参数

    Table  1.   Fitting Parameters of Kinetic Model

    动力学类型 参数 Co(Ⅱ) Mn(Ⅱ)
    准一级动力学 Qe/(mg·g−1) 23.47 8.67
    k1/h−1 0.88 0.37
    R2 0.921 0.960
    准二级动力学 Qe/(mg·g−1) 24.39 25.51
    k2/(g·mg−1·h−1) 0.09 0.07
    R2 0.999 0.999
    下载: 导出CSV

    表  2  吸附等温线模型拟合参数

    Table  2.   Fitting Parameters of Adsorption Isothermal Models

    等温吸附模型 参数 Co(Ⅱ) Mn(Ⅱ)
    Langmuir Qm/(mg·g−1) 312.50 200.00
    KL/(L·mg−1) 4.78×10−2 14.88×10−2
    R2 0.992 0.999
    Freundlich KF/(mg·g−1) 26.43 38.19
    n 2.22 3.18
    R2 0.985 0.952
    下载: 导出CSV

    表  3  吸附热力学模型拟合参数

    Table  3.   Fitting Parameters of Adsorption Thermodynamic Model

    离子种类 ΔH0/
    (kJ·mol−1
    ΔS0/
    (J·mol−1·K−1
    温度/K Qe
    /(mg·g−1)
    ΔG0
    /(kJ·mol−1)
    Co(Ⅱ) 49.50 180.80 283 61.96 −1.67
    293 80.36 −3.47
    303 94.80 −5.28
    313 106.32 −7.09
    323 115.77 −8.90
    Mn(Ⅱ) 62.12 229.08 283 77.82 −2.71
    293 91.24 −5.00
    303 105.07 −7.29
    313 117.18 −9.58
    323 122.16 −11.87
    下载: 导出CSV

    表  4  吸附扩散模型拟合参数

    Table  4.   Fitting Parameters of Adsorption-diffusion Models

    吸附扩散模型类型 参数 Co(Ⅱ) Mn(Ⅱ)
    Boyd KB/h−1 0.53 0.50
    IB 0.26 0.27
    R2 0.999 0.959
    Weber-Morris KW/(mg·g−1·h−0.5) 4.41 3.47
    IW/(mg·g−1) 12.86 14.63
    R2 0.955 0.755
    下载: 导出CSV

    表  5  ZIFs系列材料的构成与吸附性能比较

    Table  5.   Comparison of Composition and Adsorption Performance of ZIFs Series Materials

    ZIFs种类 中心金属 有机框架 拓扑类型 Co(Ⅱ)/Mn(Ⅱ)吸附
    容量/(mg·g−1)
    ZIF-7 Zn 苯并咪唑 SOD 2.15/0.13
    ZIF-11 Zn 苯并咪唑 RHO 3.98/0.21
    ZIF-12 Co 苯并咪唑 RHO 3.76/0.52
    ZIF-8 Zn 2-甲基咪唑 SOD 19.11/22.46
    ZIF-67 Co 2-甲基咪唑 SOD 23.22/24.89
    ZIF-90 Zn 咪唑-2-甲醛 SOD 6.59/9.48
      RHO—结构为八元环连接的体心立方组成的铝硅酸盐分子筛
    下载: 导出CSV
  • [1] 陈小明, 张杰鹏. 金属-有机框架材料[M]. 北京: 化学工业出版社, 2017: 26-28.
    [2] LUAN Y, ZHENG N N, QI Y, et al. Development of a SO3H-functionalized UiO-66 metal-organic framework by postsynthetic modification and studies of its catalytic activities[J]. European Journal of Inorganic Chemistry, 2014, 2014(26): 4268-4272. doi: 10.1002/ejic.201402509
    [3] KIM S N, YANG S T, KIM J, et al. Post-synthesis functionalization of MIL-101 using diethylenetriamine: a study on adsorption and catalysis[J]. CrystEngComm, 2012, 14(12): 4142-4147. doi: 10.1039/c2ce06608d
    [4] ZHANG Z H, ZHANG J L, LIU J M, et al. Selective and competitive adsorption of azo dyes on the metal-organic framework ZIF-67[J]. Water, Air, & Soil Pollution, 2016, 227(12): 471.
    [5] 杨清香,陈从涛,赵翠真,等. 类沸石咪唑酯骨架材料ZIF-67对重金属离子镉、铜和铅的吸附性能研究[J]. 功能材料,2020, 51(2): 2072-2077. doi: 10.3969/j.issn.1001-9731.2020.02.012
    [6] MAHMOODI N M, TAGHIZADEH M, TAGHIZADEH A, et al. Bio-based magnetic metal-organic framework nanocomposite: ultrasound-assisted synthesis and pollutant (heavy metal and dye) removal from aqueous media[J]. Applied Surface Science, 2019, 480: 288-299. doi: 10.1016/j.apsusc.2019.02.211
    [7] LI X Y, GAO X Y, AI L H, et al. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution[J]. Chemical Engineering Journal, 2015, 274: 238-246. doi: 10.1016/j.cej.2015.03.127
    [8] SU S Z, CHE R, LIU Q, et al. Zeolitic Imidazolate Framework-67: a promising candidate for recovery of uranium (VI) from seawater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 547: 73-80.
    [9] DU X D, WANG C C, LIU J G, et al. Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism[J]. Journal of Colloid and Interface Science, 2017, 506: 437-441. doi: 10.1016/j.jcis.2017.07.073
    [10] LI Y, ZHOU K, HE M, et al. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption[J]. Microporous and Mesoporous Materials, 2016, 234: 287-292. doi: 10.1016/j.micromeso.2016.07.039
    [11] HU Z G, PENG Y W, KANG Z X, et al. A modulated hydrothermal (MHT) approach for the facile synthesis of UIO-66-Type MOFs[J]. Inorganic Chemistry, 2015, 54(10): 4862-4868. doi: 10.1021/acs.inorgchem.5b00435
    [12] HU G Z, ZHANG W, CHEN Y T, et al. Removal of boron from water by GO/ZIF-67 hybrid material adsorption[J]. Environmental Science and Pollution Research, 2020, 27(22): 28396-28407. doi: 10.1007/s11356-020-08018-6
    [13] LOPACHIN R M, GAVIN T, DECAPRIO A, et al. Application of the hard and soft, acids and bases (HSAB) theory to toxicant-target interactions[J]. Chemical Research in Toxicology, 2012, 25(2): 239-251. doi: 10.1021/tx2003257
    [14] GUO W L, CHEN R, LIU Y, et al. Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 436: 693-703. doi: 10.1016/j.colsurfa.2013.08.011
    [15] ZHU Q, LI Z K. Hydrogel-supported nanosized hydrous manganese dioxide: Synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water[J]. Chemical Engineering Journal, 2015, 281: 69-80. doi: 10.1016/j.cej.2015.06.068
    [16] LI H C, CAO X Y, ZHANG C, et al. Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222[J]. RSC Advances, 2017, 7(27): 16273-16281. doi: 10.1039/C7RA01647F
    [17] CRINI G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J]. Progress in Polymer Science, 2005, 30(1): 38-70. doi: 10.1016/j.progpolymsci.2004.11.002
    [18] YUAN G Y, TIAN Y, LIU J, et al. Schiff base anchored on metal-organic framework for Co (II) removal from aqueous solution[J]. Chemical Engineering Journal, 2017, 326: 691-699. doi: 10.1016/j.cej.2017.06.024
    [19] VIEGAS R M C, CAMPINAS M, COSTA H, et al. How do the HSDM and Boyd’s model compare for estimating intraparticle diffusion coefficients in adsorption processes[J]. Adsorption, 2014, 20(5-6): 737-746. doi: 10.1007/s10450-014-9617-9
    [20] HASSANZADEH M, GHAEMY M. Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water[J]. Journal of Separation Science, 2018, 41(10): 2296-2304. doi: 10.1002/jssc.201701452
    [21] PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of Zeolitic Imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. doi: 10.1073/pnas.0602439103
    [22] JIANG S H, NIE C M, LIN D, et al. The relationship between inductive effect descriptor and the ionization potential for amines, alcohols, ethers, thio-alcohols and thio-ethers[J]. Journal of Molecular Science, 2007, 23(6): 410-415.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  36
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-07-27
  • 刊出日期:  2022-12-14

目录

    /

    返回文章
    返回