Requirement Analysis on Ultra-high Flux Fast Neutron Research Reactors
-
摘要: 实现超高快中子通量是世界先进研究堆的重要发展方向,对于加快第四代先进核能系统燃料及材料创新发展具有重要意义。本文从先进核能堆内结构材料与核燃料的辐照考验、长反应链超钚元素生产等角度,初步分析了我国建设超高通量快中子研究堆的必要性。在此基础上,确定了超高通量快中子研究堆的堆芯最大中子注量率及其冷却剂,给出了反应堆主要参数及冷却剂流动方案。反应堆热功率为200 MW,冷却剂为铅铋合金,最大中子注量率大于1016 cm−2·s−1。Abstract: Achieving the ultra-high fast neutron flux is an important development direction of the world's advanced research reactors, which is of great significance for accelerating the innovative development of fuels and materials for the fourth generation advanced nuclear power system. From the aspects of the irradiation test of structural materials and nuclear fuels in advanced nuclear reactor and the production of long-reaction-chain transplutonium element, this paper preliminarily analyzes the necessity of building ultra-high flux fast neutron research reactor in China. On this basis, the core maximum neutron fluence rate and its coolant of the ultra-high flux fast neutron research reactor are determined, and the main parameters of the reactor and the coolant flow scheme are given as follows: the thermal power of the reactor is 200MW, the coolant is lead-bismuth alloy, and the maximum neutron fluence rate is more than 1016 cm−2·s−1.
-
表 1 UFFR主要参数
Table 1. Key Parameters of UFFR
参数名称 数值 核反应堆热功率/MW 200 系统布置方式 紧凑池式 反应堆冷却剂 铅铋合金 燃料元件 直板型 包壳材料 316L不锈钢 核燃料 U-Zr金属燃料 富集度/% ~60 堆芯出入口温度/℃ ~180/300 冷却剂流动方向 自上而下 冷却剂最大流速/(m·s−1) ≤4 换料周期/EFPD ≥90 最大中子注量率/(cm−2·s−1) ≥1016 辐照考验孔道数量/个 ≥3 辐照能力/(dpa·L·a−1) ≥1500 辐照考验回路冷却介质 水、氦气、钠、铅铋、铅等 -
[1] IAEA. The applications of research reactors: IAEA-TECDOC-1234[R]. Vienna: IAEA, 2001. [2] 王昆鹏,张春明,攸国顺,等. 全球研究堆的主要用途及发展趋势研究[J]. 核科学与工程,2015, 35(3): 413-418. doi: 10.3969/j.issn.0258-0918.2015.03.003 [3] 张禄庆. 国外研究堆发展趋向[J]. 核动力工程,1988, 9(2): 35-40. [4] LANE J A. Ultra high flux research reactors: 58-7-117[R]. Oak Ridge: Oak Ridge National Laboratory, 1958. [5] IZHUTOV A L, KRASHENINNIKOV Y M, ZHEMKOV I Y, et al. Prolongation of the BOR-60 reactor operation[J]. Nuclear Engineering and Technology, 2015, 47(3): 253-259. doi: 10.1016/j.net.2015.03.002 [6] PIORO I L. Handbook of generation IV nuclear reactors[M]. Duxford: Woodhead Publishing, 2016: 37-52. [7] ELISEEV V A, KOROBEYNIKOVA L V, MASLOV P A, et al. On feasibility of using nitride and metallic fuel in the MBIR reactor core[J]. Nuclear Energy and Technology, 2016, 2(3): 179-182. doi: 10.1016/j.nucet.2016.07.009 [8] GERSTNER D, ANDRUS J P, BUCKNOR M. ANS summary of safety design strategy for the versatile test reactor: INL/CON-19-54662-Revision-0[R]. Idaho Falls: Idaho National Laboratory, 2019. [9] GOUGAR H D, SHARP M T. Versatile irradiation test reactor user needs assessment: INL/MIS-16-40582[R]. Idaho Falls: Idaho National Laboratory, 2017. [10] ABDERRAHIM H A, BAETEN P, DE BRUYN D, et al. MYRRHA-A multi-purpose fast spectrum research reactor[J]. Energy Conversion and Management, 2012, 63: 4-10. doi: 10.1016/j.enconman.2012.02.025 [11] PETTI D, HILL R, GEHIN J, et al. A summary of the department of energy's advanced demonstration and test reactor options study[J]. Nuclear Technology, 2017, 199(2): 111-128. [12] VORONIN V I, BERGER I F, PROSKURNINA N V, et al. Neutron diffraction study of structure and phase composition of fuel claddings made of cold-deformed steel ChS68 after normal operation in BN-600 reactor[J]. Journal of Nuclear Materials, 2018, 509: 218-224. doi: 10.1016/j.jnucmat.2018.06.036 [13] NORGETT M J, ROBINSON M T, TORRENS I M. A proposed method of calculating displacement dose rates[J]. Nuclear Engineering and Design, 1975, 33(1): 50-54. doi: 10.1016/0029-5493(75)90035-7
表(1)
计量
- 文章访问数: 396
- HTML全文浏览量: 96
- PDF下载量: 89
- 被引次数: 0