高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸汽发生器传热管束流弹失稳现象中的基础力学问题研究

杨世豪 赖姜 谭添才 孙磊

杨世豪, 赖姜, 谭添才, 孙磊. 蒸汽发生器传热管束流弹失稳现象中的基础力学问题研究[J]. 核动力工程, 2022, 43(S1): 103-110. doi: 10.13832/j.jnpe.2022.S1.0103
引用本文: 杨世豪, 赖姜, 谭添才, 孙磊. 蒸汽发生器传热管束流弹失稳现象中的基础力学问题研究[J]. 核动力工程, 2022, 43(S1): 103-110. doi: 10.13832/j.jnpe.2022.S1.0103
Yang Shihao, Lai Jiang, Tan Tiancai, Sun Lei. Study on Fundamental Mechanical Problems in Fluidelastic Instability of Steam Generator Heat Transfer Tube Bundles[J]. Nuclear Power Engineering, 2022, 43(S1): 103-110. doi: 10.13832/j.jnpe.2022.S1.0103
Citation: Yang Shihao, Lai Jiang, Tan Tiancai, Sun Lei. Study on Fundamental Mechanical Problems in Fluidelastic Instability of Steam Generator Heat Transfer Tube Bundles[J]. Nuclear Power Engineering, 2022, 43(S1): 103-110. doi: 10.13832/j.jnpe.2022.S1.0103

蒸汽发生器传热管束流弹失稳现象中的基础力学问题研究

doi: 10.13832/j.jnpe.2022.S1.0103
详细信息
    作者简介:

    杨世豪(1990—),助理研究员,主要从事管束系统两相绕流及相关流体力学的理论及模型研究,E-mail: ysh199008@163.com

    通讯作者:

    赖 姜,E-mail: laijiang1983@163.com

  • 中图分类号: TL33

Study on Fundamental Mechanical Problems in Fluidelastic Instability of Steam Generator Heat Transfer Tube Bundles

  • 摘要: 为探讨管束的流弹失稳机理以及支承方式、内流载荷对流弹失稳的影响机制,本文综合考虑定常流弹力、内流激励和非定常流体力对传热管流致振动的影响,建立了复杂流体激励作用下传热管流致振动的理论模型,通过特征值稳定性理论获得了两相横流作用下的传热管流弹失稳机制,系统地分析了内流激励和非定常流体力对传热管流弹失稳机制的影响。研究表明,支承方式会影响失稳临界流速,但不会影响流弹失稳机制;管内流会使管束各阶模态耦合,高速内流会改变管束的失稳机制;非定常流体力作为一种强迫力在流弹失稳之前,可能引起管束的“拍振”现象,在工程设计时应考虑避免。

     

  • 图  1  模型验证对比

    Figure  1.  Model Validation Comparison

    图  2  模型验证对比2

    Figure  2.  Model Validation Comparison 2

    图  3  不同支承形式与失稳机制的关系

    Figure  3.  Relationship between Different Support Modes and Instability Mechanism     

    图  4  数值解与理论解的对比

    Figure  4.  Comparison between Numerical Solution and Theoretical Solution       

    图  5  根轨迹图

    Figure  5.  Root Locus Diagram

    图  6  失稳区域图

    Figure  6.  Instability Region Diagram

    图  7  传热管振动响应

    Figure  7.  Vibration Response of Heat Transfer Tube

    图  8  非定常流体激励

    Figure  8.  Unsteady Flow Excitation

    图  9  传热管振动响应

    Figure  9.  Vibration Response of Heat Transfer Tube

  • [1] AXISA F, VILLARD B, GIBERT R J, et al. Vibration of tube bundles subjected to air-water and steam-water cross flow: preliminary results on fluidelastic instability[J]. Symposium on Flow-Induced Vibrations, 1984, 2: 269-284.
    [2] PETTIGREW M J, TAYLOR C E, KIM B S. Vibration of tube bundles in two-phase cross-flow: Part 1-hydrodynamic mass and damping[J]. Journal of Pressure Vessel Technology, 1989, 111(4): 466-477. doi: 10.1115/1.3265705
    [3] PETTIGREW M J, TROMP J H, TAYLOR C E, et al. Vibration of tube bundles in two-phase cross-flow: Part 2-fluid-elastic instability[J]. Journal of Pressure Vessel Technology, 1989, 111(4): 478-487. doi: 10.1115/1.3265706
    [4] PETTIGREW M J, ZHANG C, MUREITHI N W, et al. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow[J]. Journal of Fluids and Structures, 2005, 20(4): 567-575. doi: 10.1016/j.jfluidstructs.2005.02.007
    [5] MUREITHI N W, ZHANG C, RUËL M, et al. Fluidelastic instability tests on an array of tubes preferentially flexible in the flow direction[J]. Journal of Fluids and Structures, 2005, 21(1): 75-87. doi: 10.1016/j.jfluidstructs.2005.03.010
    [6] 韩同行,左超平,秦加明,等. 蒸汽发生器传热管流弹失稳计算[J]. 压力容器,2014, 31(11): 39-44. doi: 10.3969/j.issn.1001-4837.2014.11.07
    [7] EL BOUZIDI S, HASSAN M. An investigation of time lag causing fluidelastic instability in tube arrays[J]. Journal of Fluids and Structures, 2015, 57: 264-276. doi: 10.1016/j.jfluidstructs.2015.06.005
    [8] LI H, MUREITHI N. Development of a time delay formulation for fluidelastic instability model[J]. Journal of Fluids and Structures, 2017, 70: 346-359. doi: 10.1016/j.jfluidstructs.2017.01.020
    [9] SHINDE V, LONGATTE E, BAJ F, et al. A theoretical model of fluidelastic instability in tube arrays[J]. Nuclear Engineering and Design, 2018, 337: 406-418. doi: 10.1016/j.nucengdes.2018.07.011
    [10] SADEK O, MOHANY A, HASSAN M. Numerical investigation of the cross flow fluidelastic forces of two-phase flow in tube bundle[J]. Journal of Fluids and Structures, 2018, 79: 171-186. doi: 10.1016/j.jfluidstructs.2017.11.009
    [11] LAI J, SUN L, LI P Z, et al. Eigenvalue analysis on fluidelastic instability of a rotated triangular tube array considering the effects of two-phase flow[J]. Journal of Sound and Vibration, 2019, 439: 194-207. doi: 10.1016/j.jsv.2018.09.060
    [12] SAWADOGO T, MUREITHI N. Fluidelastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: experimental tests and comparison with theoretical results[J]. Journal of Fluids and Structures, 2014, 49: 16-28. doi: 10.1016/j.jfluidstructs.2014.04.013
  • 加载中
图(9)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  27
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-03-14
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回