高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸汽爆炸载荷下压力容器和主管道力学分析

唐鹏 姚迪 余力 罗娟 周鼎

唐鹏, 姚迪, 余力, 罗娟, 周鼎. 蒸汽爆炸载荷下压力容器和主管道力学分析[J]. 核动力工程, 2022, 43(S1): 127-131. doi: 10.13832/j.jnpe.2022.S1.0127
引用本文: 唐鹏, 姚迪, 余力, 罗娟, 周鼎. 蒸汽爆炸载荷下压力容器和主管道力学分析[J]. 核动力工程, 2022, 43(S1): 127-131. doi: 10.13832/j.jnpe.2022.S1.0127
Tang Peng, Yao Di, Yu Li, Luo Juan, Zhou Ding. Mechanical Analysis of Pressure Vessels and Main Pipes under Steam Explosion Loads[J]. Nuclear Power Engineering, 2022, 43(S1): 127-131. doi: 10.13832/j.jnpe.2022.S1.0127
Citation: Tang Peng, Yao Di, Yu Li, Luo Juan, Zhou Ding. Mechanical Analysis of Pressure Vessels and Main Pipes under Steam Explosion Loads[J]. Nuclear Power Engineering, 2022, 43(S1): 127-131. doi: 10.13832/j.jnpe.2022.S1.0127

蒸汽爆炸载荷下压力容器和主管道力学分析

doi: 10.13832/j.jnpe.2022.S1.0127
详细信息
    作者简介:

    唐 鹏(1990—),男,助理研究员,现主要从事反应堆结构力学方面的研究,E-mail: tangpengnpic@163.com

  • 中图分类号: TL334

Mechanical Analysis of Pressure Vessels and Main Pipes under Steam Explosion Loads

  • 摘要: 针对华龙一号反应堆压力容器(RPV),研究其在假设蒸汽爆炸载荷下RPV和主管的力学响应。通过建立有限元模型并根据瞬态结构分析方法开展数值分析,得到了RPV和主管道的变形、应力和应变结果。计算结果表明:RPV在600、800、1000℃下的失效载荷分别为1/20、1/50和1/100设计载荷;最大等效应力/应变均位于接管附近;主管道大部分区域应力未超过管道屈服应力。本研究可为RPV极端载荷下的结构完整性分析提供技术支持。

     

  • 图  1  RPV简化模型

    Figure  1.  Simplified Model of RPV

    图  2  不同位置的蒸汽爆炸设计压力载荷

    Figure  2.  Design Pressure Load for Steam Explosion of Different Locations

    图  3  不同载荷下RPV等效应力-时间曲线

    Figure  3.  Equivalent Stress-Time Curves of RPV under Different Loads

    图  4  1000℃下RPV总体变形-时间曲线

    Figure  4.  Overall Deformation-Time Curve of RPV at 1000 ℃

    图  5  等效应力分布图

    Figure  5.  Equivalent Stress Distribution

    图  6  等效应变分布图

    Figure  6.  Equivalent Strain Distribution

    图  7  主管道应力结果

    Figure  7.  Stress Results of Main Pipe

    图  8  主管道应变结果

    Figure  8.  Strain Results of Main Pipe

    图  9  不同载荷下支撑最大等效应力曲线

    Figure  9.  Maximum Equivalent Stress of Support under Different Loads

    表  1  力学参数

    Table  1.   Mechanical Parameter

    温度/℃弹性模量/GPa屈服应力/MPa抗拉强度/MPa热导率/[W·(m·℃)−1]比热容/[J·(kg·℃)−1]热膨胀系数/10−6−1
    2020047559442.020.51710.8
    10019041654444.100.53712.4
    20019039854244.100.57714.0
    30019042359342.020.61614.9
    40017036951240.470.67616.4
    60011824327636.320.87514.4
    80030507424.640.73618.1
    100036183047.902.69918.7
    105030142547.902.69920.6
    下载: 导出CSV
  • [1] U. S. Nuclear Regulatory Commission, Steam Explosion Review Group. A review of current understanding of the potential for containment failure arising from in-vessel steam explosion: NUREG-1116[R]. Washington: U. S. Nuclear Regulatory Commission, 1985.
    [2] THEOFANOUS T G. The study of steam explosions in nuclear systems[J]. Nuclear Engineering and Design, 1995, 155(1-2): 1-26. doi: 10.1016/0029-5493(94)00864-U
    [3] LESKOVAR M, URŠIČ M. Estimation of ex-vessel steam explosion pressure loads[J]. Nuclear Engineering and Design, 2009, 239(11): 2444-2458. doi: 10.1016/j.nucengdes.2009.07.023
    [4] LESKOVAR M, CENTRIH V, URŠIČ M. Simulation of steam explosion in stratified melt-coolant configuration[J]. Nuclear Engineering and Design, 2016, 296: 19-29. doi: 10.1016/j.nucengdes.2015.10.026
    [5] AHN K I, PARK S H, KIM H D, et al. The plant-specific uncertainty analysis for an ex-vessel steam explosion-induced pressure load using a TEXAS–SAUNA coupled system[J]. Nuclear Engineering and Design, 2012, 249: 400-412. doi: 10.1016/j.nucengdes.2012.04.015
    [6] MORIYAMA K, PARK H S. Probability distribution of ex-vessel steam explosion loads considering influences of water level and trigger timing[J]. Nuclear Engineering and Design, 2015, 293: 292-303. doi: 10.1016/j.nucengdes.2015.07.062
    [7] GRISHCHENKO D, GALUSHIN S, KUDINOV P. Failure domain analysis and uncertainty quantification using surrogate models for steam explosion in a Nordic type BWR[J]. Nuclear Engineering and Design, 2019, 343: 63-75. doi: 10.1016/j.nucengdes.2018.12.013
    [8] 黄熙,杨燕华,王溪. 堆外蒸汽爆炸堆腔压力冲量分布计算分析[J]. 核动力工程,2011, 32(3): 15-21.
    [9] 钟明君,林萌,张政铭,等. 基于1000 MW级压水堆核电厂压力容器外蒸汽爆炸的模拟研究[J]. 核动力工程,2014, 35(4): 43-47.
    [10] 张荣金, 白伟, 倪伟峰, 等. 核电站堆外蒸汽爆炸影响因素探讨[C]//第十八届中国科协年会——分6军民融合高端论坛论文集. 西安: 中国科学技术协会学会学术部, 2016: 189-196.
    [11] 李春,杨志义,丁超,等. 基于MC3D软件对核电厂压力容器蒸汽爆炸的重要参数计算及研究[J]. 核安全,2018, 17(2): 58-65.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  27
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 修回日期:  2022-03-04
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回