高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋螺旋管壳侧流动传热数值模拟研究

沈聪 刘茂龙 刘利民 徐子伊 顾汉洋

沈聪, 刘茂龙, 刘利民, 徐子伊, 顾汉洋. 铅铋螺旋管壳侧流动传热数值模拟研究[J]. 核动力工程, 2022, 43(S2): 13-18. doi: 10.13832/j.jnpe.2022.S2.0013
引用本文: 沈聪, 刘茂龙, 刘利民, 徐子伊, 顾汉洋. 铅铋螺旋管壳侧流动传热数值模拟研究[J]. 核动力工程, 2022, 43(S2): 13-18. doi: 10.13832/j.jnpe.2022.S2.0013
Shen Cong, Liu Maolong, Liu Limin, Xu Ziyi, Gu Hanyang. Numerical Simulation of Flow and Heat Transfer in Shell Side of Lead-Bismuth Eutectic Helical Tube[J]. Nuclear Power Engineering, 2022, 43(S2): 13-18. doi: 10.13832/j.jnpe.2022.S2.0013
Citation: Shen Cong, Liu Maolong, Liu Limin, Xu Ziyi, Gu Hanyang. Numerical Simulation of Flow and Heat Transfer in Shell Side of Lead-Bismuth Eutectic Helical Tube[J]. Nuclear Power Engineering, 2022, 43(S2): 13-18. doi: 10.13832/j.jnpe.2022.S2.0013

铅铋螺旋管壳侧流动传热数值模拟研究

doi: 10.13832/j.jnpe.2022.S2.0013
详细信息
    作者简介:

    沈 聪(1996—),男,博士研究生,现主要从事铅铋螺旋管安全和优化方面的研究,E-mail: cheneysc@sjtu.edu.cn

  • 中图分类号: TL333

Numerical Simulation of Flow and Heat Transfer in Shell Side of Lead-Bismuth Eutectic Helical Tube

  • 摘要: 为研究铅铋螺旋管式直流蒸汽发生器(H-OTSG)壳侧的流动传热特性,提出了一种用于螺旋管束内铅铋流动传热特性的数值模拟方法。基于现有的相关实验数据,对不同湍流模型进行了验证,在验证数值模型可靠性的基础上,对铅铋H-OTSG壳侧进行数值模拟,以分析流速和螺旋升角对其传热和阻力特性的影响。结果表明,H-OTSG壳侧流动阻力和换热均随流速和螺旋升角的增大而增强。流速增大会显著增强流场均匀性,螺旋升角增大会影响涡旋分布并加强交混。本研究为铅铋螺旋管流动传热特性研究和设计优化提供参考。

     

  • 图  1  液态NaK合金传热特性实验段示意图

    Figure  1.  Schematic Diagram of Experimental Section of Heat Transfer Characteristics of Liquid NaK Alloy

    图  2  流体计算域示意图

    Figure  2.  Schematic Diagram of Fluid Calculation Domain

    图  3  RKE和SST模型对于Kalish关系式Nu的预测偏差

    下标CFD—CFD计算值;Kalish—Kalish实验值

    Figure  3.  Prediction Deviation of RKE and SST Models for Kalish Relation Nu

    图  4  RKE和SST模型对于Zukauskas阻力系数的预测偏差

    下标Zukauskas—Zukauskas实验值

    Figure  4.  Prediction Deviation of RKE and SST Models for Zukauskas Resistance Coefficient

    图  5  螺旋管束模型(θ=10°)

    Figure  5.  Helical Tube Bundle Model (θ=10°)

    图  6  传热计算结果与Hsu关系式的对比

    Figure  6.  Comparison between Heat Transfer Calculation Results and Hsu Relation

    图  7  不同螺旋升角壳侧结构压降对比

    Figure  7.  Comparison of Pressure Drop of Shell Side Structure with Different Helix Angles

    图  8  阻力系数计算结果与Zukauskas关系式的对比

    Figure  8.  Comparison between Calculation Results of Resistance Coefficient and Zukauskas Relation

    图  9  不同Pe下两种壳侧结构的二维流场

    Figure  9.  2D Flow Field of Two Shell Side Structures at Different Pe Numbers

    图  10  不同Pe下两种壳侧结构的三维流场

    Figure  10.  3D Flow Field of Two Shell Side Structures at Different Pe Numbers

  • [1] 郭连城, 曹学武. 铅冷快堆(LFR)最新研究进展概述[C]//第六届全国新堆与研究堆学术会议. 伊犁: 中国核学会, 清华大学, 2006: 10-12.
    [2] 屠传经,陈学俊. 螺旋管式蒸汽发生器的流动与换热特性[J]. 核动力工程,1982, 3(5): 52-60.
    [3] XIAO Y, HU Z X, CHEN S, et al. Experimental investigation and prediction of post-dryout heat transfer for steam-water flow in helical coils[J]. International Journal of Heat and Mass Transfer, 2018, 127: 515-525.
    [4] XIAO Y, HU Z X, CHEN S, et al. Experimental study of two-phase frictional pressure drop of steam-water in helically coiled tubes with small coil diameters at high pressure[J]. Applied Thermal Engineering, 2018, 132: 18-29. doi: 10.1016/j.applthermaleng.2017.12.074
    [5] XU Z Y, LIU M L, XIAO Y, et al. Development of a RELAP5 model for the thermo-hydraulic characteristics simulation of the helically coiled tubes[J]. Annals of Nuclear Energy, 2021, 153: 108032. doi: 10.1016/j.anucene.2020.108032
    [6] SHAMS A, DE SANTIS A, KOLOSZAR L K, et al. Status and perspectives of turbulent heat transfer modelling in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2019, 353: 110220. doi: 10.1016/j.nucengdes.2019.110220
    [7] HOE R J, DROPKIN D, DWYER O E. Heat-transfer rates to crossflowing mercury in a staggered Tube Bank-I[J]. Transactions of the American Society of Mechanical Engineers, 1957, 79(4): 899-905.
    [8] RICKARD C L, DWYER O E, DROPKIN D. Heat-transfer rates to cross-flowing mercury in a staggered tube bank—II[J]. Transactions of the American Society of Mechanical Engineers, 1958, 80(3): 646-652.
    [9] CESS R, GROSH R. Heat transmission to fluids with low prandtl numbers for flow through tube banks[J]. Transactions of the American Society of Mechanical Engineers, 1958, 80(3): 677-681.
    [10] CHIA-JUNG H. Analytical study of heat transfer to liquid metals in cross-flow through rod bundles[J]. International Journal of Heat and Mass Transfer, 1964, 7(4): 431-446. doi: 10.1016/0017-9310(64)90135-8
    [11] KALISH S, DWYER O E. Heat transfer to NaK flowing through unbaffled rod bundles[J]. International Journal of Heat and Mass Transfer, 1967, 10(11): 1533-1558. doi: 10.1016/0017-9310(67)90006-3
    [12] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows-model development and validation[J]. Computers & Fluids, 1995, 24(3): 227-238.
    [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149
    [14] ŽUKAUSKAS A, ULINSKAS R. Efficiency parameters for heat transfer in tube banks[J]. Heat Transfer Engineering, 1985, 6(1): 19-25. doi: 10.1080/01457638508939614
  • 加载中
图(10)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  64
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-10-07
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回