高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同位素热光伏系统辐射场分布及衰减率研究

韩西龙 芦明宇 杨爱香 邵剑雄 李宁 韩承志 田岱 陈熙萌 邱家稳

韩西龙, 芦明宇, 杨爱香, 邵剑雄, 李宁, 韩承志, 田岱, 陈熙萌, 邱家稳. 同位素热光伏系统辐射场分布及衰减率研究[J]. 核动力工程, 2022, 43(S2): 19-27. doi: 10.13832/j.jnpe.2022.S2.0019
引用本文: 韩西龙, 芦明宇, 杨爱香, 邵剑雄, 李宁, 韩承志, 田岱, 陈熙萌, 邱家稳. 同位素热光伏系统辐射场分布及衰减率研究[J]. 核动力工程, 2022, 43(S2): 19-27. doi: 10.13832/j.jnpe.2022.S2.0019
Han Xilong, Lu Mingyu, Yang Aixiang, Shao Jianxiong, Li Ning, Han Chengzhi, Tian Dai, Chen Ximeng, Qiu Jiawen. Study on Radiation Field Distribution and Attenuation Rate of Radioisotope Thermophotovoltaic System[J]. Nuclear Power Engineering, 2022, 43(S2): 19-27. doi: 10.13832/j.jnpe.2022.S2.0019
Citation: Han Xilong, Lu Mingyu, Yang Aixiang, Shao Jianxiong, Li Ning, Han Chengzhi, Tian Dai, Chen Ximeng, Qiu Jiawen. Study on Radiation Field Distribution and Attenuation Rate of Radioisotope Thermophotovoltaic System[J]. Nuclear Power Engineering, 2022, 43(S2): 19-27. doi: 10.13832/j.jnpe.2022.S2.0019

同位素热光伏系统辐射场分布及衰减率研究

doi: 10.13832/j.jnpe.2022.S2.0019
基金项目: 国家自然科学基金联合基金项目(U20B2008);国防科技工业核动力技术创新中心基金(HDLCXZX-2021-ZH-031)
详细信息
    作者简介:

    韩西龙(1997—),男,硕士研究生,现主要从事同位素热光伏系统寿命方面的研究,E-mail: hanxl18@163.com

    通讯作者:

    杨爱香,E-mail:yangax@lzu.edu.cn

  • 中图分类号: TL929

Study on Radiation Field Distribution and Attenuation Rate of Radioisotope Thermophotovoltaic System

  • 摘要: 开展深空、深海探测任务必须解决长周期能源供给问题,同位素热光伏电源(RTPV)系统是重要的解决方案之一,RTPV系统性能衰减研究是开展工程化设计的基础。本工作系统地计算了250 W 238PuO2通用热源(GPHS)的功率衰减情况,利用蒙特卡洛方法模拟了RTPV系统内部的辐射场分布,最终结合国外相关实验得到RTPV系统的衰减率。当电池系统服役20 a时,热功率下降导致系统转换效率下降的年衰减率为0.5%;富氧情况下238PuO2源产生的中子辐照导致GaSb晶元转换效率下降的年衰减率为0.7%;综合考虑功率衰减及中子辐照影响,RTPV系统的年衰减率为1.2%。

     

  • 图  1  α粒子与17O,18O的反应截面

    Figure  1.  The Reaction Cross Section of α Particle with 17O, 18O

    图  2  236Pu衰变链

    α,β为衰变类型

    Figure  2.  236Pu Decay Chain

    图  3  RTPV系统工作原理图

    Figure  3.  Schematic Diagram of Working Principle of RTPV System

    图  4  同位素热光伏系统建模图像

    1—238PuO2弹丸;2—铱金属包壳;3—FWPF防撞层;4—CBCF隔热层;5—FWPF防撞外壳

    Figure  4.  RTPV System Modeling Image

    图  5  热源表面温度随时间的变化

    Figure  5.  Variation of Heat Source Surface Temperature with Time       

    图  6  辐射器能流密度

    Figure  6.  Radiator Energy Flux Density

    图  7  量子效率曲线

    Figure  7.  Quantum Efficiency Curve

    图  8  电子注量

    Figure  8.  Electron Fluence

    图  9  250W 238PuO2热源中子

    Figure  9.  250 W 238PuO2 Heat Source Neutron

    图  10  250 W PuO2热源中236Pu及其次级同位素产生的光子能谱

    Figure  10.  Photon Energy Spectrum Produced by 236Pu and Its Secondary Isotopes in 250 W PuO2 Heat Source

    图  11  中子注量率分布

    Figure  11.  Neutron Fluence Rate Distribution

    图  12  晶元表面中子能谱分布

    Figure  12.  Neutron Energy Spectrum Distribution on the Surface of Crystal

    图  13  GaSb晶元输出功率随裂变中子注量的变化

    Figure  13.  Variation of GaSb Crystal Output Power with Fission Neutron Fluence

    图  14  PuO2热源外表面光子能谱及电子能谱

    Figure  14.  Photon and Electron Energy Spectrum of PuO2 Heat Source External Surface

    表  1  产生γ光子的衰变反应

    Table  1.   Decay Reactions That Produce γ Photons

    衰变过程衰变类型半衰期γ光子能量/keV强度/%
    212Pb→212Biβ10.64 h115.1830.592
    β10.64 h238.63243.3
    β10.64 h300.0873.28
    212Bi→208Tlα60.55 min39.8571.06
    212Bi→212Poβ60.55 min727.3306.58
    β60.55 min785.371.102
    β60.55 min1078.620.564
    β60.55 min1620.501.49
    208Tl→208Pbβ3.053 min252.610.69
    β3.053 min277.3586.31
    β3.053 min510.7722.6
    β3.053 min583.19184.5
    β3.053 min763.131.81
    β3.053 min860.56412.42
    β3.053 min2614.53399.16
    下载: 导出CSV
  • [1] 杨继才, 柯国土, 郑剑平, 等. 空间核电源中的热电转换[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017: 1-10.
    [2] 黄志勇, 吴知非, 周世新, 等. 温差发电器及其在航天领域的应用[C]//中国宇航学会深空探测技术专业委员会第一届学术会议论文集. 哈尔滨: 中国宇航学会深空探测技术专业委员会, 2005.
    [3] 周寿明,吴红星,肖翀,等. 自由活塞式斯特林直线发电机技术综述[J]. 微电机,2013, 46(12): 7-11,16. doi: 10.3969/j.issn.1001-6848.2013.12.002
    [4] CROWLEY C J, ELKOUH N A, MURRAY S, et al. Thermophotovoltaic converter performance for radioisotope power systems[J]. AIP Conference Proceedings, 2005, 746(1): 601-614.
    [5] MESSENGER S R, XAPSOS M A, SUMMERS G P, et al. Co60 gamma ray irradiations of solar cells: a new way to predict space radiation damage[C]//Proceedings of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion. Waikoloa: IEEE, 1994: 2153-2156.
    [6] GRUENBAUM P E, AVERY J E, FRAAS L M. The effects of electron and proton radiation on GaSb infrared solar cells[R]. Washington: NASA, 1991: 41.
    [7] MORGAN M D, HORNE W E, BROTHERS P R. Radioisotope thermophotovoltaic power system utilizing the GaSb IR photovoltaic cell[J]. AIP Conference Proceedings, 1993, 271(1): 313-318.
    [8] STRAUCH J, KLEIN A, CHARLES P, et al. General atomics radioisotope fueled thermophotovoltaic power systems for space applications[C]//13th International Energy Conversion Engineering Conference. Orlando: AIAA, 2015: 1-13.
    [9] BENNETT G L, LOMBARDO J J, HEMLER R J, et al. Mission of daring: the general-purpose heat source radioisotope thermoelectric generator[C]//4th International Energy Conversion Engineering Conference and Exhibit. San Diego: AIAA, 2006: 1-23.
    [10] LEE J, CHEON S, HONG S, et al. A radioisotope thermophotovoltaic converter with nanophotonic emitters and filters[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1115-1125. doi: 10.1016/j.ijheatmasstransfer.2016.12.049
    [11] 许旭,刘佳强,陆景彬,等. 238Pu低能光子源衰变γ能谱识别[J]. 同位素,2017, 30(4): 249-258. doi: 10.7538/tws.2017.youxian.006
    [12] O’BRIEN R C, AMBROSI R M, BANNISTER N P, et al. Safe radioisotope thermoelectric generators and heat sources for space applications[J]. Journal of Nuclear Materials, 2008, 377(3): 506-521. doi: 10.1016/j.jnucmat.2008.04.009
    [13] DRUIN V A, PERELYGIN V P, KHLEBNIKOV G I. Spontaneous fission periods of Np237, Pu238, and Pu242[J]. Soviet Physics JETP, 1961, 13(5): 913-914.
    [14] EPSTEIN J, HARRIS D. Properties of selected radioisotopes. A bibliography, part 1 - unclassified literature[R]. Washington: NASA, 1968.
    [15] BAIR J K, HAAS F X. Total neutron yield from the reactions 13C(α, n)16O and 17, 18O(α, n)20, 21Ne[J]. Physical Review C, 1973, 7(4): 1356-1364. doi: 10.1103/PhysRevC.7.1356
    [16] HANSEN L F, ANDERSON J D, MCCLURE J W, et al. The (α, n) cross sections on 17O and 18O between 5 and 12.5 MeV[J]. Nuclear Physics A, 1967, 98(1): 25-32. doi: 10.1016/0375-9474(67)90895-0
    [17] BAIR J K, WILLARD H B. Level structure in Ne22 and Si30 from the reactions O18(α, n)Ne21 and Mg26(α, n)Si29[J]. Physical Review, 1962, 128(1): 299-304. doi: 10.1103/PhysRev.128.299
    [18] LIVINGSTON M S, BETHE H A. Nuclear physics C. Nuclear dynamics, experimental[J]. Reviews of Modern Physics, 1937, 9(3): 245-390. doi: 10.1103/RevModPhys.9.245
    [19] MATSUNOBU H, OKU T, IIJIMA S, et al. Data book for calculating neutron yields from (a, n) reaction and spontaneous fission[R]. Tokyo: Japan Atomic Energy Research Institute, 1992.
    [20] 卢希庭, 江栋兴, 叶沿林. 原子核物理(修订版)[M]. 北京: 原子能出版社, 2000: 232.
    [21] REIER M. The design of a source to simulate the gamma-ray spectrum emitted by a radioisotope thermoelectric generator[EB/OL]. (1972-01-01) [2021-10-18]. https://ntrs.nasa.gov/citations/19720010064
    [22] HOWE S D, CRAWFORD D, NAVARRO J, Economical production of Pu-238: NIAC Phase I Final Report[EB/OL].(2016-01-01)[2021-10-18]. https://ntrs.nasa.gov/citations/20160010587
    [23] SCHOCK A, MUKUNDA M, OR C, et al. Design, analysis, and optimization of a radioisotope thermophotovoltaic (RTPV) generator, and its applicability to an illustrative space mission[J]. Acta Astronautica, 1995, 37(8): 21-57.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  65
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-10-07
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回