高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

难加工含硼不锈钢热变形行为与机制研究

李永旺 何雪溢 王馨敏 郭振 吴裕 刘海涛

李永旺, 何雪溢, 王馨敏, 郭振, 吴裕, 刘海涛. 难加工含硼不锈钢热变形行为与机制研究[J]. 核动力工程, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067
引用本文: 李永旺, 何雪溢, 王馨敏, 郭振, 吴裕, 刘海涛. 难加工含硼不锈钢热变形行为与机制研究[J]. 核动力工程, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067
Li Yongwang, He Xueyi, Wang Xinmin, Guo Zhen, Wu Yu, Liu Haitao. Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067
Citation: Li Yongwang, He Xueyi, Wang Xinmin, Guo Zhen, Wu Yu, Liu Haitao. Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel[J]. Nuclear Power Engineering, 2022, 43(S2): 67-73. doi: 10.13832/j.jnpe.2022.S2.0067

难加工含硼不锈钢热变形行为与机制研究

doi: 10.13832/j.jnpe.2022.S2.0067
基金项目: 国家自然科学基金(51774081, U1967211);中央高校基本科研业务费专项资金(N160705001)
详细信息
    作者简介:

    李永旺(1989— ),男,助理研究员,工学博士,主要从事核材料研发工作,E-mail: liyw1312@126.com

    刘海涛:

  • 中图分类号: TG113.26

Study on Thermal Deformation Behavior and Mechanism of Difficult-to-process Boron-containing Stainless Steel

  • 摘要: 硼在钢中的固溶度较低,采用熔铸法制备的含硼不锈钢在凝固过程中容易形成大量粗大硬脆的共晶硼化物,导致其坯料的热加工性能较差。针对这一难题,本文以18.5Cr-14.0Ni-2.1B含硼不锈钢作为研究材料,采用热力模拟实验机进行单道次热压缩实验,建立了流变应力本构方程,构建了热加工图并明确了该不锈钢合理的加工窗口,揭示了含硼不锈钢热变形行为及其机制。实验结果表明:18.5Cr-14.0Ni-2.1B不锈钢的表观热变形激活能Q和应力指数n分别为501.08 kJ·mol−1和8.13;热压缩过程中,共晶硼化物主要发生破碎、转动并诱发形成大量微孔洞,塑性流动的奥氏体基体可将大部分孔洞填充;热压缩过程的应变量越大,其加工窗口越小,18.5Cr-14.0Ni-2.1B含硼不锈钢在1000~1100℃以0.01~1.0 s−1的应变速率进行变形时,呈现较为良好的可加工性。

     

  • 图  1  18.5Cr-14.0Ni-2.1B不锈钢铸锭1/4厚度的金相和高倍显微组织

    Figure  1.  Metallographic and High Magnification Microstructure of a Quarter Thick Layer of 18.5Cr-14.0Ni-2.1B Stainless Steel Ingot       

    图  2  不同变形温度及应变速率条件下应力-应变曲线

    Figure  2.  True Stress-True Strain Curves under Different Deformation Temperatures and Strain Rates

    图  3  流变应力与应变速率和变形温度关系

    Figure  3.  Relationship between Flow Stress, Strain Rate and Deformation Temperature

    图  4  Z参数与流变应力关系

    Figure  4.  Relationship between Z Parameter and Flow Stress

    图  5  18.5Cr-14.0Ni-2.1B不锈钢在不同应变量时的热加工图

    Figure  5.  Hot Processing Map of 18.5Cr-14.0Ni-2.1B Stainless Steel under Different Strains

    图  6  应变速率为10 s−1时不同变形温度条件下的EBSD显微组织

    Figure  6.  Microstructure of EBSD under Different Deformation Temperatures at a Strain Rate of 10 s−1

    图  7  应变速率为1.0 s−1时不同变形温度条件下金相组织演变

    Figure  7.  Metallographic Structure Evolution under Different Deformation Temperatures at a Strain Rate of 1.0 s−1

  • [1] BENZ J M, TANNER J E, SMARTT H A, et al. Maintaining continuity of knowledge of spent fuel pools: tool survey: PNNL-SA-25663[R]. Washington: Pacific Northwest National Laboratory, 2016.
    [2] 李刚,简敏,王美玲,等. 反应堆乏燃料贮运用中子吸收材料的研究进展[J]. 材料导报A:综述篇,2011, 25(7): 110-113,129.
    [3] Electric Power Research Institute. Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications 2009 edition [R]. EPRI: Palo Alto,CA: 2009.
    [4] YU G. Boron-containing stainless steel for thermal neutron shielding[J]. Journal of Iron and Steel Research, 1989(1): 90.
    [5] TSUBOTA M, OIKAWA M. Boron-bearing stainless steels for thermal neutron shielding[J]. Bulletin of the Iron and Steel Institute of Japan, 2005, 12(10): 25-32.
    [6] TAKEMOTO T, YAMASAKI K, KAWAI Y. Development of boron-containing stainless steel for thermal neutron shielding[J]. Materia Japan, 1996, 35(4): 412-414. doi: 10.2320/materia.35.412
    [7] 王春刚,黄秋菊,李云,等. 硅锰系TRIP钢的变形抗力[J]. 钢铁研究学报,2008, 20(11): 51-54. doi: 10.13228/j.boyuan.issn1001-0963.2008.11.012
    [8] 王占学. 塑性加工金属学[M]. 北京: 冶金工业出版社, 2006: 101-103.
    [9] GUO C Q, KELLY P M. Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons[J]. Journal of Materials Science, 2004, 39(3): 1109-1111. doi: 10.1023/B:JMSC.0000012956.43917.c1
    [10] 李金富,周尧和. 界面动力学对共晶生长过程的影响[J]. 中国科学E辑:工程科学材料科学,2005, 35(5): 449-458.
    [11] SRINIVASA N, PRASAD Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51(1-4): 171-192. doi: 10.1016/0924-0136(94)01602-W
    [12] ZHOU X, WANG M J, FU Y F, et al. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel[J]. Materials Characterization, 2017, 124: 182-191. doi: 10.1016/j.matchar.2017.01.001
    [13] MEDINA S F, HERNANDEZ C A. Modelling of the dynamic recrystallizayion of austenite in low alloy and microalloyed steels[J]. Acta Mater, 1996, 44(1): 165-171.
    [14] PRASAD Y V R K. Author’s reply: dynamic materials model: basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236. doi: 10.1007/BF02647765
    [15] PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. doi: 10.1007/BF02664902
    [16] MISHRA S, NARASIMHAN K, SAMAJDAR I. Deformation twinning in AISI 316L austenitic stainless steel: role of strain and strain path[J]. Materials Science and Technology, 2007, 23(9): 1118-1126. doi: 10.1179/174328407X213242
    [17] CABRERA E S P. High temperature deformation of 316L stainless steel[J]. Materials Science and Technology, 2001, 17(2): 155-161. doi: 10.1179/026708301101509944
  • 加载中
图(7)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  60
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-10-10
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回