高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温下锆合金包壳切向微动磨蚀行为研究

任全耀 蒲曾坪 焦拥军 郑美银 陈平 韩元吉 刘孟龙 庄文华 郭相龙 张乐福

任全耀, 蒲曾坪, 焦拥军, 郑美银, 陈平, 韩元吉, 刘孟龙, 庄文华, 郭相龙, 张乐福. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程, 2022, 43(S2): 82-87. doi: 10.13832/j.jnpe.2022.S2.0082
引用本文: 任全耀, 蒲曾坪, 焦拥军, 郑美银, 陈平, 韩元吉, 刘孟龙, 庄文华, 郭相龙, 张乐福. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程, 2022, 43(S2): 82-87. doi: 10.13832/j.jnpe.2022.S2.0082
Ren Quan yao, Pu Zeng ping, Jiao Yongjun, Zheng Meiyin, Chen Ping, Han Yuanji, Liu Menglong, Zhuang Wenhua, Guo Xianglong, Zhang Lefu. Study on Tangential Fretting Wear Behavior of Zirconium Alloy Cladding at High Temperature[J]. Nuclear Power Engineering, 2022, 43(S2): 82-87. doi: 10.13832/j.jnpe.2022.S2.0082
Citation: Ren Quan yao, Pu Zeng ping, Jiao Yongjun, Zheng Meiyin, Chen Ping, Han Yuanji, Liu Menglong, Zhuang Wenhua, Guo Xianglong, Zhang Lefu. Study on Tangential Fretting Wear Behavior of Zirconium Alloy Cladding at High Temperature[J]. Nuclear Power Engineering, 2022, 43(S2): 82-87. doi: 10.13832/j.jnpe.2022.S2.0082

高温下锆合金包壳切向微动磨蚀行为研究

doi: 10.13832/j.jnpe.2022.S2.0082
基金项目: 国家自然科学基金(U2067221、12105273);四川省重大科技专项(2019ZDZX0001)
详细信息
    作者简介:

    任全耀(1991—),男,博士研究生,现主要从事核燃料组件设计及性能分析方面研究,E-mail: renquanyao@foxmail.com

  • 中图分类号: TL334

Study on Tangential Fretting Wear Behavior of Zirconium Alloy Cladding at High Temperature

  • 摘要: 核燃料组件在服役过程中,定位格架夹持结构与燃料棒之间的微动磨蚀是导致燃料棒包壳破损的第一大因素,约占燃料棒包壳失效的54.8%。本文针对不同夹持结构对锆合金包壳管的切向微动磨蚀行为,开展了高温高压水化学环境下的磨蚀试验研究,对比分析了曲面与平面夹持结构在不同夹持力条件下包壳管磨痕形貌、磨蚀体积、磨蚀深度等关键参数。研究结果表明,曲面夹持结构对燃料棒包壳的磨蚀以磨粒磨损、片层状脱落、“犁沟”效应为主;平面结构以“犁沟”效应、片层状脱落为主,磨粒磨损较少;此外,相同条件下曲面夹持结构的最大磨蚀深度大于平面夹持结构。

     

  • 图  1  试验件安装示意图

    Figure  1.  Schematic Diagram of Test Sample Installation

    图  2  夹持结构与包壳管振动方向示意图

    Figure  2.  Schematic Diagram of Vibrating Directions of Holding Structure and Cladding Tube

    图  3  10 N下包壳管磨痕全貌

    Figure  3.  Full View of Wear Scar on the Cladding Tube at 10 N          

    图  4  不同法向载荷下曲面夹持结构对磨包壳管磨痕微观形貌     

    Figure  4.  Microstructure of Wear Scar on the Cladding Tube against the Curved Holding Structure at Different Loads

    图  5  不同法向载荷下平面夹持结构对磨包壳管磨痕微观形貌       

    Figure  5.  Microstructure of Wear Scar on the Cladding Tube against the Planar Holding Structure at Different Normal Loads

    图  6  不同夹持结构对磨包壳管磨蚀体积

    Figure  6.  Wear Volume of Cladding Tubes against Different Holding Structures

    图  7  不同夹持结构对磨包壳管磨蚀深度

    Figure  7.  Wear Depth of Cladding Tube against Different Holding Structures

    图  8  包壳管最大磨损深度

    Figure  8.  Maximum Wear Depth of Cladding Tube

    图  9  不同夹持结构对磨包壳管磨蚀系数

    Figure  9.  Wear Coefficients of the Cladding Tube against Different Holding Structures

  • [1] IAEA. Review of fuel failures in water cooled reactors: Nuclear Energy Series No. NF-T-2.1[R]. Vienna: IAEA, 2010.
    [2] LAZAREVIC S, LU R Y, FAVEDE C, et al. Investigating grid-to-rod fretting wear of nuclear fuel claddings using a unique autoclave fretting rig[J]. Wear, 2018, 412-413: 30-37. doi: 10.1016/j.wear.2018.06.011
    [3] QU J, COOLEY K M, SHAW A H, et al. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation[J]. Wear, 2016, 356-357: 17-22. doi: 10.1016/j.wear.2016.02.020
    [4] JIANG H, QU J, LU R Y, et al. Grid-to-rod flow-induced impact study for PWR fuel in reactor[J]. Progress in Nuclear Energy, 2016, 91: 355-361. doi: 10.1016/j.pnucene.2016.06.003
    [5] LUCADAMO G A, HOWLAND W H, TYMIAK-CARLSON N, et al. Characterization and simulation methods applied to the study of fretting wear in Zircaloy-4[J]. Wear, 2018, 402-403: 11-20. doi: 10.1016/j.wear.2018.01.012
    [6] ZHANG L F, LAI P, LIU Q D, et al. Fretting wear behavior of zirconium alloy in B-Li water at 300℃[J]. Journal of Nuclear Material, 2018, 499: 401-409. doi: 10.1016/j.jnucmat.2017.12.003
    [7] LAI P, ZHANG H, ZHANG L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water[J]. Wear, 2019, 424-425: 53-61. doi: 10.1016/j.wear.2019.02.001
    [8] KIM H K, LEE Y H, LEE K H. On the geometry of the fuel rod supports concerning a fretting wear failure[J]. Nuclear Engineering and Design, 2008, 238(12): 3321-3330.
    [9] LEE Y H, KIM H K. Effect of spring shapes on the variation of loading conditions and the wear behaviour of the nuclear fuel rod during fretting wear tests[J]. Wear, 2007, 263(1-6): 451-457. doi: 10.1016/j.wear.2006.12.071
    [10] LEE Y H, KIM H K. Evaluation of fretting wear behavior on the simulated supporting structures of a dual-cooled nuclear fuel rod[J]. Materials Science Forum, 2010, 654-656: 2564-2567.
    [11] LEE Y H, KIM H K. Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition[J]. Wear, 2013, 301(1-2): 569-574. doi: 10.1016/j.wear.2013.01.067
    [12] LEE Y H, KIM H K, KANG H S, et al. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration[J]. AIP Conference Proceeding, 2012, 1448(1): 235-241.
    [13] KIM K T, SUH J M. Impact of nuclear fuel assembly design on grid-to-rod fretting wear[J]. Journal of Nuclear Science and Technology, 2009, 46(2): 149-157. doi: 10.1080/18811248.2007.9711516
    [14] HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015
    [15] HU Z P, THOULESS M D, LU W. Effects of gap size and excitation frequency on the vibrational behavior and wear rate of fuel rods[J]. Nuclear Engineering and Design, 2016, 308: 261-268. doi: 10.1016/j.nucengdes.2016.08.038
    [16] KOVÁCS S, STABEL J, REN M M, et al. Comparative study on rod fretting behavior of different spacer spring geometries[J]. Wear, 2009, 266(1-2): 194-199. doi: 10.1016/j.wear.2008.06.010
    [17] SHIN M K, LEE H A, LEE J J, et al. Optimization of a nuclear fuel spacer grid spring using homology constraints[J]. Nuclear Engineering and Design, 2008, 238(10): 2624-2634. doi: 10.1016/j.nucengdes.2008.04.003
    [18] SONG K N, LEE S B, SHIN M K, et al. New spacer grid to enhance mechanical/structural performance[J]. Journal of Nuclear Science and Technology, 2010, 47(3): 295-300. doi: 10.1080/18811248.2010.9711957
  • 加载中
图(9)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  46
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-26
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回