高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

U型管式蒸汽发生器内改性壁面强化传热数值研究

袁俊杰 刘莉 顾汉洋

袁俊杰, 刘莉, 顾汉洋. U型管式蒸汽发生器内改性壁面强化传热数值研究[J]. 核动力工程, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094
引用本文: 袁俊杰, 刘莉, 顾汉洋. U型管式蒸汽发生器内改性壁面强化传热数值研究[J]. 核动力工程, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094
Yuan Junjie, Liu Li, Gu Hanyang. Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator[J]. Nuclear Power Engineering, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094
Citation: Yuan Junjie, Liu Li, Gu Hanyang. Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator[J]. Nuclear Power Engineering, 2022, 43(S2): 94-99. doi: 10.13832/j.jnpe.2022.S2.0094

U型管式蒸汽发生器内改性壁面强化传热数值研究

doi: 10.13832/j.jnpe.2022.S2.0094
基金项目: 国家自然科学基金(51906147);上海市自然科学基金(21ZR1430900)
详细信息
    作者简介:

    袁俊杰(1997—),男,硕士研究生,研究方向核科学与技术,E-mail: yuanjunjie@sjtu.edu.cn

    通讯作者:

    刘 莉,E-mail: liulide@sjtu.edu.cn

  • 中图分类号: TL331

Numerical Study on Heat Transfer Enhancement of Modified Wall in U-tube Steam Generator

  • 摘要: 为了达到较好的传热效果以及减少传热恶化造成管道破裂等事故的可能,本文基于改进的格子Boltzmann方法(LBM)相变传热模型,对蒸汽发生器U型传热管内工质的气泡动力学行为和壁面的传热性能进行了数值研究。结果表明:与纯亲水壁面相比,疏水区域促进气泡成核,混合润湿性壁面可以显著提高沸腾传热量。混合润湿性壁面可以提高临界热流密度(CHF),并延迟CHF点的出现,可以有效地减小传热恶化的可能。总体上,疏水点间距和个数决定气泡的生长状态,存在一个最佳疏水点设置可以获得最佳沸腾传热性能,选择合适的疏水点间距和个数可以得到理想的传热壁面。

     

  • 图  1  计算域

    W—疏水点宽度;D—疏水点间距

    Figure  1.  Computational Domain

    图  2  混合润湿性沸腾过程中气泡模式的演变

    Figure  2.  Evolution of Bubble Mode During Mixed Wettability Boiling Process

    图  3  2种传热壁面在不同Ja下沸腾传热性能对比

    Figure  3.  Comparison of Boiling Heat Transfer Performance of Two Heat Transfer Walls under Different Ja

    图  4  不同DJa下与$q'$的关系

    Figure  4.  Relationship between Ja and$q'$under Different D

    图  5  不同NJa下与$q'$的关系

    Figure  5.  Relationship between Ja and $q'$ under Different N

    表  1  物性参数设置

    Table  1.   Physical Parameter Settings

    参数名参数值参数名参数值
    液体饱和温度(Ts0.9Tc重力加速度(G)0.00003
    饱和液体(ρl5.9饱和蒸汽(ρv0.58
    动力粘度(μ0.354热扩散系数(α0.05
    表面张力(σ0.088汽化潜热(hfg0.33
    润湿性(θ亲水60°润湿性(θ疏水100°
    下载: 导出CSV
  • [1] 吴宜灿,柏云清,宋勇,等. 中国铅基研究反应堆概念设计研究[J]. 核科学与工程,2014, 34(2): 201-208.
    [2] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [3] 张朝东. 蒸汽发生器管道破裂对铅基堆热工安全特性影响分析研究[D]. 合肥: 中国科学技术大学, 2018.
    [4] SUROTO B J, TASHIRO M, HIRABAYASHI S, et al. Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface[J]. Journal of Thermal Science and Technology, 2013, 8(1): 294-308. doi: 10.1299/jtst.8.294
    [5] BETZ A R, JENKINS J, KIM C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741. doi: 10.1016/j.ijheatmasstransfer.2012.10.080
    [6] JO H, KIM S, PARK H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109. doi: 10.1016/j.ijmultiphaseflow.2014.02.006
    [7] MOTEZAKKER A R, SADAGHIANI A K, ÇELIK S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174. doi: 10.1016/j.ijheatmasstransfer.2019.01.139
    [8] LIN Y H, LUO Y, LI J Y, et al. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121158. doi: 10.1016/j.ijheatmasstransfer.2021.121158
    [9] GONG S, CHENG P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2015, 80: 206-216. doi: 10.1016/j.ijheatmasstransfer.2014.08.092
    [10] FENG Y, CHANG F C, HU Z T, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. doi: 10.1016/j.ijthermalsci.2020.106814
    [11] ZHAO Z C, ZHANG J J, JIA D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. doi: 10.1016/j.applthermaleng.2017.02.014
    [12] YUAN J J, YE X, SHAN Y G. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling[J]. International Journal of Multiphase Flow, 2021, 142: 103701. doi: 10.1016/j.ijmultiphaseflow.2021.103701
    [13] YUAN J J, WENG Z H, SHAN Y G. Modelling of double bubbles coalescence behavior on different wettability walls using LBM method[J]. International Journal of Thermal Sciences, 2021, 168: 107037. doi: 10.1016/j.ijthermalsci.2021.107037
    [14] GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  60
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-08-30
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回