高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TRISO包覆燃料颗粒裂变产物扩散释放特性研究

郑军强 贺亚男 章静 巫英伟 田文喜 苏光辉 秋穗正

郑军强, 贺亚男, 章静, 巫英伟, 田文喜, 苏光辉, 秋穗正. TRISO包覆燃料颗粒裂变产物扩散释放特性研究[J]. 核动力工程, 2022, 43(S2): 104-110. doi: 10.13832/j.jnpe.2022.S2.0104
引用本文: 郑军强, 贺亚男, 章静, 巫英伟, 田文喜, 苏光辉, 秋穗正. TRISO包覆燃料颗粒裂变产物扩散释放特性研究[J]. 核动力工程, 2022, 43(S2): 104-110. doi: 10.13832/j.jnpe.2022.S2.0104
Zheng Junqiang, He Yanan, Zhang Jing, Wu Yingwei, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on the Diffusion and Release Characteristics of Fission Products from TRISO Coated Fuel Particles[J]. Nuclear Power Engineering, 2022, 43(S2): 104-110. doi: 10.13832/j.jnpe.2022.S2.0104
Citation: Zheng Junqiang, He Yanan, Zhang Jing, Wu Yingwei, Tian Wenxi, Su Guanghui, Qiu Suizheng. Study on the Diffusion and Release Characteristics of Fission Products from TRISO Coated Fuel Particles[J]. Nuclear Power Engineering, 2022, 43(S2): 104-110. doi: 10.13832/j.jnpe.2022.S2.0104

TRISO包覆燃料颗粒裂变产物扩散释放特性研究

doi: 10.13832/j.jnpe.2022.S2.0104
基金项目: 国家自然科学基金项目(U20B2013)
详细信息
    作者简介:

    郑军强(1998—),男,硕士研究生,现从事核燃料元件性能分析与设计研究,E-mail: adam12@stu.xjtu.edu.cn

    通讯作者:

    贺亚男,E-mail: heyanan@xjtu.edu.cn

  • 中图分类号: TL352

Study on the Diffusion and Release Characteristics of Fission Products from TRISO Coated Fuel Particles

  • 摘要: 为研究三结构各向同性(TRISO)燃料颗粒裂变产物扩散释放特性,建立了辐照-热-力耦合作用下TRISO包覆燃料颗粒裂变产物Fick扩散模型,并通过IAEA CRP-6基准题进行了验证;利用所建模型对高温气冷堆典型工况下TRISO包覆燃料颗粒的性能进行了分析,同时,考虑裂变产物的反冲效应和热扩散效应,对TRISO包覆燃料颗粒不同温度及颗粒功率下裂变产物释放特性进行了分析。研究结果表明,高温会使TRISO包覆燃料颗粒裂变产物包容能力丧失,功率的提升则对裂变产物的释放影响较小。

     

  • 图  1  TRISO包覆燃料颗粒模型

    Figure  1.  TRISO-coated Fuel Particle Model

    图  2  TRISO包覆燃料颗粒径向温度分布

    Figure  2.  Radial Temperature Distribution of TRISO-coated Fuel Particle

    图  3  基准题Case8 包覆层内表面切向应力

    Figure  3.  Tangential Stress at Inner Surface of Coated Layer for Case 8 Benchmark

    图  4  基准题Case 5 137Cs、110Agm释放率计算结果

    Figure  4.  Release Rate Calculation Results of 137Cs & 110Agm of Case 5 Benchmark     

    图  5  SiC层和PyC层内表面切应力随燃耗变化

    Figure  5.  Variation with Burnup of Tangential Stress at Inner Surface of SiC and PyC Layers

    图  6  SiC层失效概率

    Figure  6.  Failure Probability of SiC Layer

    图  7  TRISO包覆燃料颗粒Sr、Cs、Ag释放率

    Figure  7.  Release Rate of Sr, Cs, Ag of TRISO-coated Fuel Particle        

    图  8  TRISO包覆燃料颗粒Sr、Cs、Ag释放量

    Figure  8.  Release Amount of Sr, Cs, Ag of TRISO-coated Fuel Particle

    图  9  不同模型Sr释放率

    Figure  9.  Sr Release Rate in Different Models

    图  10  不同模型中Buffer层至OPyC层Sr浓度分布

    Figure  10.  Sr Concentration Distribution from Buffer Layer to OPyC Layer in Different Models

    图  11  不同温度TRISO包覆燃料颗粒裂变产物释放率

    Figure  11.  Release Rate of Fission Product in TRISO-coated Fuel Particle at Different Temperatures

    图  12  1273 K不同功率TRISO燃料颗粒裂变产物释放率      

    Figure  12.  Release Rate of Fission Product in TRISO-coated Fuel Particle under Different Powers at 1273 K

    表  1  燃料芯核外的铀含量

    Table  1.   Uranium Content outside the Fuel Kernel

    结构铀质量分数/%
    Buffer0.1
    IPyC0.01
    SiC0.0001
    OPyC0.0001
    Matrix0.00001
    Kernel99.88979
    下载: 导出CSV

    表  2  本研究结果与CRP-6参与者报告数值范围比较

    Table  2.   Comparison of the Range of Values Reported by CRP-6 Participants to This Study Results

    核素算例ATLASBISON*COPAFRESCO-IIGETTERPARFUME本研究
    137CsCase 1a0.4720.4660.4730.4560.4980.4670.468
    Case 1b1.0001.0001.0001.0001.0001.0001.000
    Case 4a2.55×10-42.44×10-48.25×10-41.47×10-31.64×10-44.10×10-42.04×10-4
    Case 4b0.200.200.210.220.210.230.20
    Case 5a3.78×10-122.45×10-181.92×10-112.19×10-196.45×10-145.49×10-14
    Case 5b6.44×10-41.49×10-46.63×10-41.22×10-33.07×10-42.25×10-4
    110AgmCase 4a0.270.380.550.410.420.430.52
    Case 4b0.580.780.950.870.880.890.73
    Case 5a1.57×10-56.51×10-61.25×10-55.55×10-65.06×10-55.55×10-6
    Case 5b0.140.400.540.390.420.453
      注:*BISON程序验证数据见文献[10]
    下载: 导出CSV
  • [1] HALES J D, WILLIAMSON R L, NOVASCONE S R, et al. Multidimensional multiphysics simulation of TRISO particle fuel[J]. Journal of Nuclear Materials, 2013, 443(1-3): 531-543. doi: 10.1016/j.jnucmat.2013.07.070
    [2] IAEA. Advances in high temperature gas cooled reactor fuel technology: IAEA-TECDOC-CD-1674[R]. Vienna: International Atomic Energy Agency, 2013.
    [3] 陈平,李伟,李垣明,等. TRISO燃料颗粒三维多物理场耦合计算模型开发[J]. 核动力工程,2017, 38(5): 169-174.
    [4] 唐昌兵,李文杰,陈平,等. FCM燃料辐照-热-力耦合性能数值研究[J]. 核动力工程,2017, 38(S2): 16-19.
    [5] ZHANG C, WU Y W, LIU S C, et al. Multidimensional multiphysics modeling of TRISO particle fuel with SiC/ZrC coating using modified fission gas release model[J]. Annals of Nuclear Energy, 2020, 145: 107599. doi: 10.1016/j.anucene.2020.107599
    [6] ZHANG C, WU Y W, HE Y N, et al. Investigation on thermo-mechanical performance of fully ceramic microencapsulated fuel[J]. Journal of Nuclear Materials, 2021, 556: 153171. doi: 10.1016/j.jnucmat.2021.153171
    [7] IAEA. Fuel performance and fission product Behaviour in gas cooled reactors: IAEA-TECDOC-978[R]. Vienna: International Atomic Energy Agency, 1997.
    [8] SKERJANC W F, DEMKOWICZ P A. PARFUME theory and model basis report: INL/EXT-08-14497-Rev001[R]. Idaho Falls: Idaho National Lab. , 2018.
    [9] KONINGS R J M, ALLEN T R, STOLLER R E, et al. Comprehensive nuclear materials[M]. Amsterdam: Elsevier, 2012
    [10] HALES J D, JIANG W, TOPTAN A, et al. Modeling fission product diffusion in TRISO fuel particles with BISON[J]. Journal of Nuclear Materials, 2021, 548: 152840. doi: 10.1016/j.jnucmat.2021.152840
    [11] OLANDER D R. Fundamental aspects of nuclear reactor fuel elements: TID--26711-P1[R]. Vienna: IAEA, 1976.
    [12] PETTI D, MARTIN P, PHELIP M, et al. Development of improved models and designs for coated-particle gas reactor fuels -- final report under the international nuclear energy research initiative (I-NERI): INEEL/EXT-05-02615[R]. Idaho Falls: Idaho National Lab. , 2004.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  37
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 修回日期:  2022-09-22
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回