高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于熵产分析的铅-铋冷却带绕丝燃料棒束热工水力特性研究

张冬 张昊春 王琦 孙文博

张冬, 张昊春, 王琦, 孙文博. 基于熵产分析的铅-铋冷却带绕丝燃料棒束热工水力特性研究[J]. 核动力工程, 2022, 43(S2): 125-130. doi: 10.13832/j.jnpe.2022.S2.0125
引用本文: 张冬, 张昊春, 王琦, 孙文博. 基于熵产分析的铅-铋冷却带绕丝燃料棒束热工水力特性研究[J]. 核动力工程, 2022, 43(S2): 125-130. doi: 10.13832/j.jnpe.2022.S2.0125
Zhang Dong, Zhang Haochun, Wang Qi, Sun Wenbo. Thermal-Hydraulic Investigation of LBE Cooled Wire-Wrapped Fuel Bundle Based on Entropy Generation Analysis[J]. Nuclear Power Engineering, 2022, 43(S2): 125-130. doi: 10.13832/j.jnpe.2022.S2.0125
Citation: Zhang Dong, Zhang Haochun, Wang Qi, Sun Wenbo. Thermal-Hydraulic Investigation of LBE Cooled Wire-Wrapped Fuel Bundle Based on Entropy Generation Analysis[J]. Nuclear Power Engineering, 2022, 43(S2): 125-130. doi: 10.13832/j.jnpe.2022.S2.0125

基于熵产分析的铅-铋冷却带绕丝燃料棒束热工水力特性研究

doi: 10.13832/j.jnpe.2022.S2.0125
基金项目: 国家重点研发计划资助(2020YFB1901900)
详细信息
    作者简介:

    张 冬(1999—),女,博士研究生,现主要从事核反应堆热工水力研究,Email: 22B902029@stu.hit.edu.cn

    通讯作者:

    张昊春,E-mail: hczhang@hit.edu.cn

  • 中图分类号: TL334

Thermal-Hydraulic Investigation of LBE Cooled Wire-Wrapped Fuel Bundle Based on Entropy Generation Analysis

  • 摘要: 为了从设计和运行的角度对铅-铋冷却快堆燃料组件的热工水力特性进行分析,基于有限体积法对铅-铋冷却的19根带有绕丝结构的燃料棒束进行数值模拟。对于不同质量流量、热功率下燃料组件流动及传热特性展开分析。并通过熵产分析方法,对不同工况下冷却剂熵产特性及热力学不可逆性进行研究。结果表明:二次流以及熵产分布在轴向上均呈现出周期性变化;入口速度是影响二次流以及熵产分布的主要因素;在保证结构安全的前提下,适当增加冷却剂流速有利于提高冷却剂的热经济性能。

     

  • 图  1  燃料棒束结构平面示意图

    P—燃料棒节距;D—燃料棒直径;d—绕丝直径;L—六边形外套管边长;H—绕丝螺距

    Figure  1.  Schematic Plan of Fuel Bundle Structure

    图  2  简化后的流体域模型

    Figure  2.  Fluid Domain Model after Simplification

    图  3  无量纲横向二次流分布

    Figure  3.  Distribution of Dimensionless Transverse Secondary Flow      

    图  4  相同功率下的不同工况轴向二次流强度变化

    Z—笛卡尔坐标系中Z轴的距离

    Figure  4.  Change of Axial Secondary Flow Intensity under Different Conditions under the Same Power

    图  5  相同Re不同功率下轴向二次流强度变化

    Figure  5.  Variation of Secondary Flow at Axial Direction with the Same Reynolds Number and Different Power

    图  6  工况2下的截面温度梯度导致的熵产率分布

    Figure  6.  Distribution of Entropy Generation Rate Caused by Section Temperature Gradient under Condition 2

    图  7  不同工况下的轴向传热熵产率波动

    Figure  7.  Fluctuation of Axial Heat Transfer Entropy Generation Rate under Different Conditions

    图  8  由于流体粘性导致的无量纲熵产率分布

    Figure  8.  Distribution of Dimensionless Entropy Generation Rate Due to Fluid Viscosity

    图  9  不同工况下轴向流动熵产率变化

    Figure  9.  Change of Axial Flow Entropy Generation Rate under Different Conditions

    图  10  Ns在不同Re下的变化

    Figure  10.  Ns Changes with Re

    图  11  Be在不同Re下的变化

    Figure  11.  Be Changes with Re

    图  12  Ep在不同Re的变化

    Figure  12.  Ep Changes with Re

    表  1  网格敏感性分析

    Table  1.   Sensitivity Analysis of Mesh

    网格网格数量/千万NuNs/10−3f
    12.828.99710.24210.02029
    23.359.11710.24580.02036
    33.789.15390.24760.02049
    44.379.16650.24960.02065
    下载: 导出CSV

    表  2  计算工况中$ \dot m $Q

    Table  2.   $\dot m $ and Q in Calculation Condition

    工况Re/104$\dot m $(kg·s−1)Q /kW
    10.52.4011197.0
    21.04.8022197.0
    31.57.2033197.0
    42.09.6045197.0
    54.019.2089197.0
    64.019.208998.5
    74.019.2089394.0
    88.038.4178197.0
    下载: 导出CSV
  • [1] 吕科锋. 液态铅铋合金在带统丝棒束组件内热工水力行为研究[D]. 合肥: 中国科学技术大学, 2016.
    [2] CHENG X, TAK N I. Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
    [3] CHAI X, LIU X J, XIONG J B, et al. CFD analysis of flow blockage phenomena in a LBE-cooled 19-pin wire-wrapped rod bundle[J]. Nuclear Engineering and Design, 2019, 344: 107-121. doi: 10.1016/j.nucengdes.2019.01.019
    [4] SCHMANDT B, HERWIG H. Losses due to the flow through conduit components in mini-and micro-systems accounted for by head loss/change coefficients[C]//ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. Chicago: American Society of Mechanical Engineers, 2014: V001T02A002.
    [5] SCHMANDT B, HERWIG H. Diffuser and nozzle design optimization by entropy generation minimization[J]. Entropy, 2011, 13(7): 1380-1402. doi: 10.3390/e13071380
    [6] JI Y, ZHANG H C, YANG X, et al. Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids[J]. Entropy, 2017, 19(3): 108. doi: 10.3390/e19030108
    [7] KÖNÖZSY L. A new hypothesis on the anisotropic Reynolds stress tensor for turbulent flows[M]. Cham: Springer, 2019.
    [8] PACIO J, DAUBNER M, FELLMOSER F, et al. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers[J]. Nuclear Engineering and Design, 2016, 301: 111-127. doi: 10.1016/j.nucengdes.2016.03.003
    [9] PAOLETTI S, RISPOLI F, SCIUBBA E. Calculation of exergetic losses in compact heat exchanger passages[J]. American Society of Mechanical Engineers. Advanced Energy Systems, 1989, 10(2): 21-29.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  43
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-08-30
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回