高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逆流式直通道印刷电路板式换热器流动传热特性CFD研究

毛俊俊 杨小勇 赵钢 彭威

毛俊俊, 杨小勇, 赵钢, 彭威. 逆流式直通道印刷电路板式换热器流动传热特性CFD研究[J]. 核动力工程, 2022, 43(S2): 150-157. doi: 10.13832/j.jnpe.2022.S2.0150
引用本文: 毛俊俊, 杨小勇, 赵钢, 彭威. 逆流式直通道印刷电路板式换热器流动传热特性CFD研究[J]. 核动力工程, 2022, 43(S2): 150-157. doi: 10.13832/j.jnpe.2022.S2.0150
Mao Junjun, Yang Xiaoyong, Zhao Gang, Peng Wei. CFD Study on Flow and Heat Transfer Characteristics of Counter-flow Straight Channel Printed Circuit Plate Heat Exchanger[J]. Nuclear Power Engineering, 2022, 43(S2): 150-157. doi: 10.13832/j.jnpe.2022.S2.0150
Citation: Mao Junjun, Yang Xiaoyong, Zhao Gang, Peng Wei. CFD Study on Flow and Heat Transfer Characteristics of Counter-flow Straight Channel Printed Circuit Plate Heat Exchanger[J]. Nuclear Power Engineering, 2022, 43(S2): 150-157. doi: 10.13832/j.jnpe.2022.S2.0150

逆流式直通道印刷电路板式换热器流动传热特性CFD研究

doi: 10.13832/j.jnpe.2022.S2.0150
基金项目: 国家原子能机构核能开发项目和中核集团领创项目
详细信息
    作者简介:

    毛俊俊(1997—),男,在读硕士研究生,现主要从事紧凑式换热器流动换热特性研究,E-mail: maojj20@mails.tsinghua.edu.cn

    通讯作者:

    杨小勇,E-mail: xy-yang@tsinghua.edu.cn

  • 中图分类号: TL331;TK172

CFD Study on Flow and Heat Transfer Characteristics of Counter-flow Straight Channel Printed Circuit Plate Heat Exchanger

  • 摘要: 印刷电路板式换热器(PCHE)凭借高紧凑性、耐高温高压、高换热效率等优势,在高温气冷堆氦气闭式布雷顿循环中具有较好的应用前景。本文利用计算流体力学(CFD)数值模拟研究了逆流式直通道PCHE型氦气回热器的流动与换热性能。通过改变通道水平间距、垂直间距以及流道半径,分析了层流条件下,几何参数对直通道PCHE内氦气流动换热的影响。计算结果表明,垂直间距仅对换热性能有影响,水平间距无明显影响,流道半径对PCHE流动换热性能均有影响。减小通道垂直间距,PCHE的换热性能提高;保持入口质量流量不变时,缩小通道半径,对流换热系数提高,换热性能增强,但沿程压降增大。此外,使用垂直或水平方向多通道PCHE模型进行模拟,通过比较不同通道的沿程温度和压降分布,以确定垂直和水平位置对PCHE热工水力性能的影响。通过对比多通道模型与单个换热单元的计算结果,表明周期性边界条件的单个换热单元能够较为准确模拟完整PCHE模型的大多数流道。

     

  • 图  1  PCHE单个换热单元模型

    Figure  1.  PCHE Single Heat Exchange Unit Model

    图  2  总传热系数随入口质量流量增加的变化

    Figure  2.  Variation of Total Heat Transfer Coefficient with the Increase of Inlet Mass Flow Rate

    图  3  总传热系数随垂直间距的变化

    Figure  3.  Variation of Total Heat Transfer Coefficient with Vertical Interval

    图  4  冷、热通道进出口压降随垂直间距的变化

    Figure  4.  Variation of Inlet and Outlet Pressure Drop of Cold and Hot Channels with Vertical Spacing

    图  5  总传热系数随水平间距的变化

    Figure  5.  Variation of Total Heat Transfer Coefficient with Horizontal Spacing

    图  6  冷通道进出口压降随水平间距的变化

    Figure  6.  Variation of Inlet and Outlet Pressure Drop of Cold Channels with Horizontal Spacing

    图  7  冷通道对流换热系数随流道半径的变化

    Figure  7.  Variation of Convective Heat Transfer Coefficient with Flow Channel Radius in Cold Channel

    图  8  冷通道进出口压降随流道半径的变化

    Figure  8.  Variation of Inlet and Outlet Pressure Drop of Cold Channel with Flow Channel Radius

    图  9  水平多通道物理模型及边界条件示意图

    Figure  9.  Schematic Diagram of Horizontal Multi-Channel Physical Model and Boundary Conditions

    图  10  不同水平位置冷通道的沿程氦气平均温度分布

    Figure  10.  Average Temperature Distribution of Helium Along the Cold Channel at Different Horizontal Positions

    图  11  单换热单元与水平第5层换热单元的比较

    Figure  11.  Comparison between Single Heat Exchange Unit and Horizontal 5th Layer Heat Exchange Unit

    图  12  垂直多通道物理模型及边界条件示意图

    Figure  12.  Schematic Diagram of Vertical Multi-Channel Physical Model and Boundary Conditions

    图  13  不同垂直位置冷通道的沿程氦气平均温度分布

    Figure  13.  Average Temperature Distribution of Helium Along the Cold Channel at Different Vertical Positions

    图  14  单换热单元与垂直第5层换热单元的沿程温度分布      

    Figure  14.  Temperature Distribution Along a Single Heat Exchange Unit and a Vertical 5th Layer Heat Exchange Unit

    图  15  垂直多层通道模型与单换热单元的冷、热通道氦气出口温度

    Figure  15.  Outlet Temperature of Helium in Cold and Hot Channels of Single Heat Exchange Unit and Vertical Multilayer Channel Model

    图  16  垂直多层通道模型与单换热单元的冷、热通道进出口压降

    Figure  16.  Pressure Drop at Inlet and Outlet at Cold and Hot Channels of Single Heat Exchange Unit and Vertical Multilayer Channel Model

    表  1  单个换热单元模型与上下不对称模型的比较

    Table  1.   Comparison between Single Heat Exchange Unit Model and Upper and Lower Asymmetric Model

    参数参数值
    单个换热单元非对称型模型对称型模型
    $ {\bar{T}}_{\mathrm{c},\mathrm{o}\mathrm{u}\mathrm{t}}/\mathrm{K} $1040.7401038.6741028.183
    $ {\bar{T}}_{\mathrm{h},\mathrm{o}\mathrm{u}\mathrm{t}}/\mathrm{K} $945.264947.336936.313
    $ \mathrm{\Delta }{P}_{\mathrm{c}}/\mathrm{P}\mathrm{a} $11390.80011362.76011156.536
    $ \mathrm{\Delta }{P}_{\mathrm{h}}/\mathrm{P}\mathrm{a} $11498.30011529.58011298.840
    下载: 导出CSV
  • [1] YIN C Y, YANG X Y, WANG J. Dimensionless analysis of heat transfer and flow resistance on laminar flow recuperator[C]//16th International Conference on Nuclear Engineering. Orlando: ASME, 2008: 659-666.
    [2] LIU G X, HUANG Y P, WANG J F, et al. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110290. doi: 10.1016/j.rser.2020.110290
    [3] NATESAN K, MOISSEYTSEV A, MAJUMDAR S. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design[J]. Journal of Nuclear Materials, 2009, 392(2): 307-315. doi: 10.1016/j.jnucmat.2009.03.019
    [4] FIGLEY J, SUN X D, MYLAVARAPU S K, et al. Numerical study on thermal hydraulic performance of a Printed Circuit Heat Exchanger[J]. Progress in Nuclear Energy, 2013, 68: 89-96. doi: 10.1016/j.pnucene.2013.05.003
    [5] ANEESH A M, SHARMA A, SRIVASTAVA A, et al. Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 98: 474-482. doi: 10.1016/j.applthermaleng.2015.12.046
    [6] MYLAVARAPU S K, SUN X D, GLOSUP R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering, 2014, 65(1-2): 605-614. doi: 10.1016/j.applthermaleng.2014.01.025
    [7] MYLAVARAPU S K, SUN X D, CHRISTENSEN R N. Hydrodynamically developing and fully developed laminar flows in a semicircular duct: analytical and computational analyses[J]. Nuclear Science and Engineering, 2016, 182(3): 319-331. doi: 10.13182/NSE14-107
    [8] CHEN M H, SUN X D, CHRISTENSEN R N. Numerical investigation of thermal boundary conditions of a high-temperature PCHE with zigzag flow channels[C]//2018 International Congress on Advances in Nuclear Power Plants. Charlotte: ANS, 2018.
    [9] CHEN M H, SUN X D, CHRISTENSEN R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. doi: 10.1016/j.applthermaleng.2016.07.149
    [10] SEO J W, KIM Y H, KIM D, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers[J]. Entropy, 2015, 17(5): 3438-3457. doi: 10.3390/e17053438
    [11] LI H Z, KRUIZENGA A, ANDERSON M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. doi: 10.1016/j.ijthermalsci.2011.07.004
    [12] LI H Z, ZHANG Y F, ZHANG L X, et al. PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle[J]. International Journal of Heat and Mass Transfer, 2016, 98: 204-218. doi: 10.1016/j.ijheatmasstransfer.2016.03.001
    [13] KRUIZENGA A, ANDERSON M, FATIMA R, et al. Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(3): 031002. doi: 10.1115/1.4004252
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  31
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 修回日期:  2022-09-01
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回