Numerical Simulation of Oxidation Corrosion behavior of F-M Steel in LBE Environment Based on Lattice Boltzmann
-
摘要: 铅冷快堆的冷却剂介质液态铅铋共晶合金(LBE)会对反应堆结构材料产生严重的腐蚀作用。铁素体-马氏体钢(F-M钢)作为反应堆结构候选材料,在控氧LBE中会发生氧化腐蚀,生成典型的双层氧化膜结构。为了设计高可靠性反应堆结构,预测F-M钢在LBE环境下的材料寿命,本文基于格子玻尔兹曼(LBM)方法,模拟了氧化腐蚀过程中多组分传输、氧化反应、固液相变等腐蚀现象,建立了不锈钢在LBE中的氧化腐蚀模型。计算得到的模拟结果与试验数据吻合较好,建立的模型可以解释扩散和反应过程在氧化过程中的作用。开发的格子Boltzmann模型可以用于研究介观尺度氧化膜生长。
-
关键词:
- 铅铋共晶合金(LBE) /
- 氧化腐蚀 /
- 格子Boltzmann
Abstract: Liquid lead-bismuth eutectic (LBE), which is the coolant medium of lead-cooled fast reactor, seriously corrodes the structural materials of the reactor. Ferritic-martensitic steel (F-M steel), as a candidate material for reactor structure, undergoes oxidation corrosion in oxygen controlled LBE, forming a typical double-layer oxide film structure. In order to design a highly reliable reactor structure and predict the material life of F-M steel in LBE environment, based on lattice Boltzmann (LBM) method, this paper simulates the corrosion phenomena such as multi-component transport, oxidation reaction, solid liquid phase transition, etc. in the process of oxidation corrosion, and establishes the oxidation corrosion model of stainless steel in LBE. The calculated simulation results are in good agreement with the experimental data, and the established model can explain the role of diffusion and reaction in the oxidation process. The lattice Boltzmann model developed can be used to study the growth of mesoscopic oxide films.-
Key words:
- Lead bismuth eutectic (LBE) /
- Oxidation corrosion /
- Lattice boltzmann
-
表 1 HT9、T91钢成分表 wt%
Table 1. Compositions of HT9 and T91
钢 C Cr Ni Mn Mo Si Nb V Fe HT9 0.20 11.5 0.65 0.62 0.81 0.28 — — 余量 T91 0.12 8.76 0.07 0.47 0.97 0.37 0.09 0.22 余量 -
[1] 许咏丽,龙斌. ADS结构材料在液态Pb-Bi合金中的腐蚀[J]. 原子能科学技术,2003, 37(4): 325-333. doi: 10.3969/j.issn.1000-6931.2003.04.009 [2] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049 [3] KERMANI E P. Simulation of oxygen control technology in applications of liquid lead and lead–bismuth eutectic systems for mitigating materials corrosion using the lattice Boltzmann method[D]. Las Vegas: University of Nevada, 2021. [4] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470 C (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051 [5] ZHANG J S. Long-term behaviors of oxide layer in liquid lead–bismuth eutectic (LBE), Part I: model development and validation[J]. Oxidation of Metals, 2013, 80(5): 669-685. [6] SCHROER C, KONYS J. Physical chemistry of corrosion and oxygen control in liquid lead and lead-bismuth eutectic: FZKA-7364[R]. Germany: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, 2007. [7] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050 [8] CHEN L, KANG Q J, TANG Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. doi: 10.1016/j.ijheatmasstransfer.2015.02.035 [9] KANG Q J, LICHTNER P C, ZHANG D X. Lattice Boltzmann pore‐scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5): B05203.