高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann的LBE环境下F-M钢氧化腐蚀行为的数值模拟研究

吴佳玥 罗英 杜华 王留兵 吴冰洁 朱明冬

吴佳玥, 罗英, 杜华, 王留兵, 吴冰洁, 朱明冬. 基于格子Boltzmann的LBE环境下F-M钢氧化腐蚀行为的数值模拟研究[J]. 核动力工程, 2022, 43(S2): 196-201. doi: 10.13832/j.jnpe.2022.S2.0196
引用本文: 吴佳玥, 罗英, 杜华, 王留兵, 吴冰洁, 朱明冬. 基于格子Boltzmann的LBE环境下F-M钢氧化腐蚀行为的数值模拟研究[J]. 核动力工程, 2022, 43(S2): 196-201. doi: 10.13832/j.jnpe.2022.S2.0196
Wu Jiayue, Luo Ying, Du Hua, Wang Liubing, Wu Bingjie, Zhu Mingdong. Numerical Simulation of Oxidation Corrosion behavior of F-M Steel in LBE Environment Based on Lattice Boltzmann[J]. Nuclear Power Engineering, 2022, 43(S2): 196-201. doi: 10.13832/j.jnpe.2022.S2.0196
Citation: Wu Jiayue, Luo Ying, Du Hua, Wang Liubing, Wu Bingjie, Zhu Mingdong. Numerical Simulation of Oxidation Corrosion behavior of F-M Steel in LBE Environment Based on Lattice Boltzmann[J]. Nuclear Power Engineering, 2022, 43(S2): 196-201. doi: 10.13832/j.jnpe.2022.S2.0196

基于格子Boltzmann的LBE环境下F-M钢氧化腐蚀行为的数值模拟研究

doi: 10.13832/j.jnpe.2022.S2.0196
详细信息
    作者简介:

    吴佳玥(1996—),女,硕士研究生,核能科学与工程专业,E-mial:xxxholics@yeah.net

  • 中图分类号: TL341

Numerical Simulation of Oxidation Corrosion behavior of F-M Steel in LBE Environment Based on Lattice Boltzmann

  • 摘要: 铅冷快堆的冷却剂介质液态铅铋共晶合金(LBE)会对反应堆结构材料产生严重的腐蚀作用。铁素体-马氏体钢(F-M钢)作为反应堆结构候选材料,在控氧LBE中会发生氧化腐蚀,生成典型的双层氧化膜结构。为了设计高可靠性反应堆结构,预测F-M钢在LBE环境下的材料寿命,本文基于格子玻尔兹曼(LBM)方法,模拟了氧化腐蚀过程中多组分传输、氧化反应、固液相变等腐蚀现象,建立了不锈钢在LBE中的氧化腐蚀模型。计算得到的模拟结果与试验数据吻合较好,建立的模型可以解释扩散和反应过程在氧化过程中的作用。开发的格子Boltzmann模型可以用于研究介观尺度氧化膜生长。

     

  • 图  1  LBE环境下F-M钢氧化腐蚀示意图

    Figure  1.  Schematic Diagram of Corrosion/Oxidation of F-M Steel under LBE Environment

    图  2  HT9钢实验数据与模拟结果的比较(外氧化膜厚度)       

    Figure  2.  Comparison of Experimental Data and Simulation Results for HT9 Steel (Thickness of Outer Oxide Film)

    图  3  HT9钢实验数据与模拟结果的比较(内氧化膜厚度)       

    Figure  3.  Comparison of Experimental Data and Simulation Results for HT9 Steel (Thickness of Inner Oxide Film)

    图  4  HT9钢实验数据与模拟结果的比较(总氧化膜厚度)       

    Figure  4.  Comparison of Experimental Data and Simulation Results for HT9 Steel (Total Oxide Film Thickness)

    图  5  T91钢实验数据与模拟结果的比较(外氧化膜厚度)         

    Figure  5.  Comparison of Experimental Data and Simulation Results for T91 Steel (Thickness of Outer Oxide Film)

    图  6  T91钢实验数据与模拟结果的比较(内氧化膜厚度)       

    Figure  6.  Comparison of Experimental Data and Simulation Results for T91 Steel (Thickness of Inner Oxide Film)

    图  7  T91钢实验数据与模拟结果的比较(总氧化膜厚度)       

    Figure  7.  Comparison of Experimental Data and Simulation Results for T91 Steel (Total Oxide Film Thickness)

    图  8  LBE氧浓度对T91钢氧化腐蚀的影响规律(T=450℃)         

    Figure  8.  Effect of LBE Oxygen Concentration on Oxidation Corrosion of T91 Steel (T=450℃)

    图  9  温度T91钢氧化腐蚀的影响规律(氧浓度饱和)

    Figure  9.  Effect of Temperature on Oxidation Corrosion of T91 Steel (Oxygen Concentration Saturation)

    表  1  HT9、T91钢成分表 wt%

    Table  1.   Compositions of HT9 and T91

    CCrNiMnMoSiNbVFe
    HT90.2011.50.650.620.810.28余量
    T910.128.760.070.470.970.370.090.22余量
    下载: 导出CSV
  • [1] 许咏丽,龙斌. ADS结构材料在液态Pb-Bi合金中的腐蚀[J]. 原子能科学技术,2003, 37(4): 325-333. doi: 10.3969/j.issn.1000-6931.2003.04.009
    [2] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [3] KERMANI E P. Simulation of oxygen control technology in applications of liquid lead and lead–bismuth eutectic systems for mitigating materials corrosion using the lattice Boltzmann method[D]. Las Vegas: University of Nevada, 2021.
    [4] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470 C (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [5] ZHANG J S. Long-term behaviors of oxide layer in liquid lead–bismuth eutectic (LBE), Part I: model development and validation[J]. Oxidation of Metals, 2013, 80(5): 669-685.
    [6] SCHROER C, KONYS J. Physical chemistry of corrosion and oxygen control in liquid lead and lead-bismuth eutectic: FZKA-7364[R]. Germany: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, 2007.
    [7] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe–9Cr–1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [8] CHEN L, KANG Q J, TANG Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. doi: 10.1016/j.ijheatmasstransfer.2015.02.035
    [9] KANG Q J, LICHTNER P C, ZHANG D X. Lattice Boltzmann pore‐scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5): B05203.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  134
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-10-31
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回