高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华龙一号反应堆压力容器下封头高温蠕变研究

杨立才 邱天 杨志海 尹祁伟

杨立才, 邱天, 杨志海, 尹祁伟. 华龙一号反应堆压力容器下封头高温蠕变研究[J]. 核动力工程, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202
引用本文: 杨立才, 邱天, 杨志海, 尹祁伟. 华龙一号反应堆压力容器下封头高温蠕变研究[J]. 核动力工程, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202
Yang Licai, Qiu Tian, Yang Zhihai, Yin Qiwei. Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202
Citation: Yang Licai, Qiu Tian, Yang Zhihai, Yin Qiwei. Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel[J]. Nuclear Power Engineering, 2022, 43(S2): 202-207. doi: 10.13832/j.jnpe.2022.S2.0202

华龙一号反应堆压力容器下封头高温蠕变研究

doi: 10.13832/j.jnpe.2022.S2.0202
详细信息
    作者简介:

    杨立才(1987—),男,高级工程师,现主要从事反应堆压力容器设计研究,E-mail: yanglicai2324@sina.com

  • 中图分类号: TL351+.6;TG115.5+7

Study on High-temperature Creep for Lower Head of HPR1000 Reactor Pressure Vessel

  • 摘要: 高温蠕变是华龙一号(HPR1000)反应堆压力容器(RPV)下封头在严重事故工况下的主要失效模式。为准确地研究采用国产16MND5锻件制造的HPR1000 RPV下封头的高温蠕变问题,确保RPV下封头在严重事故工况下的结构完整性,基于试验获得的材料高温蠕变数据,联合数值模拟和理论分析,对HPR1000 RPV下封头高温蠕变问题进行了系统的研究。首先建立了RPV下封头材料高温蠕变本构模型。利用ANSYS软件开展了高温及内压载荷作用下的下封头高温蠕变数值模拟研究,获得了下封头蠕变应变和蠕变应力分布。此外,首次针对RPV下封头高温蠕变问题进行了理论研究。结果表明,RPV下封头高温蠕变主要发生在温度高于450℃的区域;在严重事故工况下,HPR1000 RPV下封头不会发生高温蠕变失效;内压增大将导致RPV塑性失效范围扩大;RPV下封头稳态蠕变理论分析结果与数值模拟结果相吻合,理论分析结果揭示了RPV下封头分层失效现象。

     

  • 图  1  RPV下封头高温蠕变分析模型

    Figure  1.  Model of High-temperature Creep Analysis for RPV Lower Head

    图  2  Von-Mises应力分布

    Figure  2.  Von-Mises Stress Distribution

    图  3  等效蠕变应变分布

    Figure  3.  Equivalent Creep Strain Distribution

    图  4  72 h时刻RPV下封头等效蠕变应变随壁厚分布

    Figure  4.  Distribution of Equivalent Creep Strain along Thickness of RPV Lower Head after 72 h

    图  5  72 h时刻RPV下封头Von-Mises应力随壁厚分布

    Figure  5.  Distribution of Von-Mises Stress along Thickness of RPV Lower Head after 72 h

    图  6  RPV下封头蠕变分析模型

    rθφ—径向坐标、经向坐标和环向坐标;Ri(θ)—下封头内径;Ro—下封头外径

    Figure  6.  Creep Analysis Model of RPV Lower Head

    图  7  Von-Mises应力随壁厚变化

    Figure  7.  Variation of Von-Mises Stress along Thickness

  • [1] 姚彦贵,宁冬,武志玮,等. 假想堆芯熔化严重事故下反应堆压力容器完整性的研究进展与建议[J]. 核技术,2013, 36(4): 040615.
    [2] DEVOS J, CATHERINE C S, POETTE C, et al. CEA programme to model the failure of the lower head in severe accidents[J]. Nuclear Engineering and Design, 1999, 191(1): 3-15. doi: 10.1016/S0029-5493(99)00049-7
    [3] KOUNDY V, DURIN M, NICOLAS L, et al. Simplified modeling of a PWR reactor pressure vessel lower head failure in the case of a severe accident[J]. Nuclear Engineering and Design, 2005, 235(8): 835-843. doi: 10.1016/j.nucengdes.2004.11.012
    [4] YAMAGUCHI Y, KATSUYAMA J, NEMOTO Y, et al. Development of failure evaluation method for BWR Lower head in severe accident; high temperature creep test and creep damage model[J]. Mechanical Engineering Journal, 2017, 4(6): 15-00694.
    [5] KOUNDY V, HOANG N H. Modelling of PWR lower head failure under severe accident loading using improved shells of revolution theory[J]. Nuclear Engineering and Design, 2008, 238(9): 2400-2410. doi: 10.1016/j.nucengdes.2008.03.006
    [6] VILLANUEVA W, TRAN C T, KUDINOV P. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head[J]. Nuclear Engineering and Design, 2012, 249: 146-153. doi: 10.1016/j.nucengdes.2011.07.048
    [7] KATSUYAMA J, YAMAGUCHI Y, NEMOTO Y, et al. Development of failure evaluation method for BWR Lower head in severe accident; - Creep damage evaluation based on thermal-hydraulics and structural analyses[J]. Mechanical Engineering Journal, 2016, 3(3): 1-12.
    [8] MAO J F, ZHU J W, BAO S Y, et al. Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario[J]. International Journal of Pressure Vessels and Piping, 2016, 139-140: 107-116. doi: 10.1016/j.ijpvp.2016.03.009
    [9] MAO J F, ZHU J W, BAO S Y, et al. Study on structural failure of RPV with geometric discontinuity under severe accident[J]. Nuclear Engineering and Design, 2016, 307: 354-363. doi: 10.1016/j.nucengdes.2016.07.027
    [10] KIM H N, NAMGUNG I. Two-dimensional axisymmetric thermostructural analysis of APR1400 reactor vessel lower head for full-core meltdown accident[J]. Nuclear Technology, 2016, 195(1): 15-28. doi: 10.13182/NT15-17
    [11] 温爽,李铁萍,李聪新,等. 熔融物堆内滞留条件下压力容器变形[J]. 核技术,2016, 39(10): 100603.
    [12] 邱天,罗英,张蕊,等. 严重事故下反应堆压力容器下封头高温蠕变变形数值研究[J]. 热加工工艺,2018, 47(8): 56-59,62. doi: 10.14158/j.cnki.1001-3814.2018.08.014
    [13] 杨立才,罗英,邱天,等. 华龙一号反应堆压力容器材料高温性能试验研究[J]. 科技视界,2020(13): 124-127. doi: 10.19694/j.cnki.issn2095-2457.2020.13.47
    [14] ASME锅炉及压力容器委员会材料分委员会. ASME锅炉及压力容器规范Ⅱ卷[M]. 北京: 中国石化出版社, 2011.
    [15] YOU L H, OU H, ZHENG Z Y. Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure[J]. Composite Structures, 2007, 78(2): 285-291. doi: 10.1016/j.compstruct.2005.10.002
  • 加载中
图(7)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  26
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-10-16
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回