Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation
-
摘要: 为掌握全长范围内的燃料棒振动响应特性,以用于燃料棒微动磨损寿命分析,本研究运用计算流体动力学(CFD)方法,对燃料组件典型栅元的湍流激振进行数值模拟分析,并通过棒表面的瞬态脉动压力分布开展不同夹持力下的单棒瞬态动力学分析。研究表明:格架上游的截面平均湍动能约为0.1 m2/s2,格架临近出口位置湍动能达到峰值的0.65 m2/s2,格架的存在显著增强了流场的湍流强度,这是造成燃料棒湍流激振的主要原因;通过瞬态动力学分析确定了均方根振幅最大的定位格架位置,并建立了该格架的均方根振幅和振动速度随夹持力变化的关联式。本研究将为后续微动磨损理论计算及实验验证奠定基础。
-
关键词:
- 燃料组件 /
- 典型栅元 /
- 湍流激振 /
- 流固耦合 /
- 计算流体动力学(CFD)
Abstract: In order to master the vibration response characteristics of fuel rods in the full length range for fretting wear life analysis of fuel rods, this study is to use the computational fluid dynamics (CFD) method to numerically simulate the turbulence excitation of typical lattice of fuel assembly, and to carry out the transient dynamic analysis of a single rod under different clamping forces through the transient fluctuating pressure distribution on the surface of fuel rod. The results show that: the average turbulent kinetic energy of the upstream section of the grid is about 0.1 m2/s2, and the turbulent kinetic energy peaks at 0.65 m2/s2 near the grid outlet. Therefore, the existence of grid significantly enhances the turbulence intensity of the flow field, which is the main reason for the turbulence excitation of the fuel rod; the position of the spacer grid with the maximum root mean square amplitude is determined by transient dynamic analysis, and the correlation between the root mean square amplitude and vibration velocity of the grid with the clamping force is established. This study will lay a foundation for the following theoretical calculation and experimental verification of fretting wear. -
表 1 固体材料物性
Table 1. Solid Material Properties
材料 物性参数 数值 Zr-4 密度/(kg ∙ m−3) 6545.0 杨氏模量/GPa 78.45 泊松比 0.412 UO2 密度/(kg ∙ m−3) 10270.85 杨氏模量/GPa 2.446 泊松比 0.318 不锈钢 密度/(kg ∙ m−3) 7928.96 杨氏模量/GPa 172.0 泊松比 0.275 弹簧片 刚度/(N ∙ mm−1) 14334.0 刚凸 刚度/(N ∙ m−1) 381.0 表 2 瞬态计算参数设置
Table 2. Transient Calculation Parameter Setting
参数名 设置值 瞬态总时间/s 0.5 时间步长/s 0.001 单时间步长最大迭代次数 50 -
[1] INTERNATIONAL ATOMIC ENERGY AGENCY. Review of Fuel Failures in Water Cooled Reactors: IAEA Nuclear Energy Series: No. NF-T-2.1[R]. Vienna, Austria: IAEA, 2010. [2] HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015 [3] RUBIOLO P R. Probabilistic prediction of fretting-wear damage of nuclear fuel rods[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1628-1640. doi: 10.1016/j.nucengdes.2006.04.023 [4] RUBIOLO P R, YOUNG M Y. On the factors affecting the fretting-wear risk of PWR fuel assemblies[J]. Nuclear Engineering and Design, 2009, 239(1): 68-79. doi: 10.1016/j.nucengdes.2008.08.021 [5] YAN J, YUAN K, TATLI E, et al. A new method to predict grid-to-rod fretting in a PWR fuel assembly inlet region[J]. Nuclear Engineering and Design, 2011, 241(8): 2974-2982. doi: 10.1016/j.nucengdes.2011.06.019 [6] LIU H D, CHEN D Q, HU L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow[J]. Nuclear Engineering and Design, 2017, 325: 68-77. doi: 10.1016/j.nucengdes.2017.10.004 [7] BAKOSI J, CHRISTON M A, LOWRIE R B, et al. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors[J]. Nuclear Engineering and Design, 2013, 262: 544-561. doi: 10.1016/j.nucengdes.2013.06.007 [8] CHRISTON M A, LU R, BAKOSI J, et al. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors[J]. Journal of Computational Physics, 2016, 322: 142-161. doi: 10.1016/j.jcp.2016.06.042 [9] KENNEDY J C, SOLBREKKEN G L. Coupled Fluid Structure Interaction (FSI) modeling of parallel plate assemblies[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011, 54907: 159-167. [10] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836 [11] 齐欢欢,冯志鹏,姜乃斌,等. 格架松弛对燃料棒湍流激励及微振磨损的影响研究[J]. 原子能科学技术,2018, 52(10): 1810-1816. doi: 10.7538/yzk.2018.youxian.0066 [12] 敖翔. 非均匀来流下螺旋桨的流固耦合特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021. [13] 刘海东. 复杂结构燃料元件的流致振动特性数值研究[D]. 重庆: 重庆大学, 2018. [14] CIONCOLINI A, SILVA-LEON J, COOPER D, et al. Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications[J]. Nuclear Engineering and Design, 2018, 338: 102-118. doi: 10.1016/j.nucengdes.2018.08.010 [15] CHOI M H, KANG H S, YOON K H, et al. Vibration analysis of a dummy fuel rod continuously supported by spacer grids[J]. Nuclear Engineering and Design, 2004, 232(2): 185-196. doi: 10.1016/j.nucengdes.2003.11.007 [16] FERRARI G, BALASUBRAMANIAN P, LE GUISQUET S, et al. Non-linear vibrations of nuclear fuel rods[J]. Nuclear Engineering and Design, 2018, 338: 269-283. doi: 10.1016/j.nucengdes.2018.08.013 -