高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料组件典型栅元湍流激振数值研究

文爽 曾谢虎 文青龙 阮神辉 张瑞谦 韦天国 杨红艳

文爽, 曾谢虎, 文青龙, 阮神辉, 张瑞谦, 韦天国, 杨红艳. 燃料组件典型栅元湍流激振数值研究[J]. 核动力工程, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009
引用本文: 文爽, 曾谢虎, 文青龙, 阮神辉, 张瑞谦, 韦天国, 杨红艳. 燃料组件典型栅元湍流激振数值研究[J]. 核动力工程, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009
Wen Shuang, Zeng Xiehu, Wen Qinglong, Ruan Shenhui, Zhang Ruiqian, Wei Tianguo, Yang Hongyan. Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation[J]. Nuclear Power Engineering, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009
Citation: Wen Shuang, Zeng Xiehu, Wen Qinglong, Ruan Shenhui, Zhang Ruiqian, Wei Tianguo, Yang Hongyan. Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation[J]. Nuclear Power Engineering, 2023, 44(1): 9-16. doi: 10.13832/j.jnpe.2023.01.0009

燃料组件典型栅元湍流激振数值研究

doi: 10.13832/j.jnpe.2023.01.0009
详细信息
    作者简介:

    文 爽(1999—),男,硕士研究生,现主要从事反应堆热工水力研究,E-mail: 20173232@cqu.edu.cn

    通讯作者:

    文青龙,E-mail: qlwen@cqu.edu.cn

  • 中图分类号: TL334

Numerical Study on Typical Cell of Fuel Assembly by Turbulence Excitation

  • 摘要: 为掌握全长范围内的燃料棒振动响应特性,以用于燃料棒微动磨损寿命分析,本研究运用计算流体动力学(CFD)方法,对燃料组件典型栅元的湍流激振进行数值模拟分析,并通过棒表面的瞬态脉动压力分布开展不同夹持力下的单棒瞬态动力学分析。研究表明:格架上游的截面平均湍动能约为0.1 m2/s2,格架临近出口位置湍动能达到峰值的0.65 m2/s2,格架的存在显著增强了流场的湍流强度,这是造成燃料棒湍流激振的主要原因;通过瞬态动力学分析确定了均方根振幅最大的定位格架位置,并建立了该格架的均方根振幅和振动速度随夹持力变化的关联式。本研究将为后续微动磨损理论计算及实验验证奠定基础。

     

  • 图  1  典型栅元模型

    Figure  1.  Model of Typical Cell

    图  2  流体域中不同网格的轴向截面平均压力变化

    Figure  2.  Mean Pressure Variation of Axial Section of Different Grids in Fluid Domain

    图  3  固体域湿模态节点敏感性分析

    Figure  3.  Sensitivity Analysis of Wet Modal Nodes in Solid Domain

    图  4  燃料棒边界条件

    Figure  4.  Boundary Conditions of Fuel Rod

    图  5  流体域轴向截面平均压力

    Figure  5.  Mean Pressure of Axial Section in Fluid Domain

    图  6  格架区域横向速度变化

    Figure  6.  Transverse Velocity Change in Grid Area

    图  7  格架区域截面平均湍动能变化

    Figure  7.  Variation of Mean Turbulent Kinetic Energy in Section of Grid Area

    图  8  4#定位格架的脉动压力

    Figure  8.  Fluctuating Pressure of 4# Grid Spacer

    图  9  5#定位格架的脉动压力

    Figure  9.  Fluctuating Pressure of 5# Grid Spacer

    图  10  6#定位格架的脉动压力

    Figure  10.  Fluctuating Pressure of 6# Grid Spacer

    图  11  5#定位格架位置振幅时域信息

    Figure  11.  Time Domain Information of Position Amplitude of 5# Grid Spacer

    图  12  定位格架振幅频域信息

    Figure  12.  Amplitude Frequency Domain Information of Grid Spacer

    图  13  不同夹持力下不同定位格架的均方根振幅

    Figure  13.  RMS Amplitude of Different Grid Spacers under Different Clamping Forces

    图  14  不同夹持力下不同定位格架的时均振动速度

    Figure  14.  Time-Averaged Vibration Velocity of Different Grid Spacers under Different Clamping Forces

    表  1  固体材料物性

    Table  1.   Solid Material Properties

    材料物性参数数值
    Zr-4密度/(kg ∙ m−3)6545.0
    杨氏模量/GPa78.45
    泊松比0.412
    UO2密度/(kg ∙ m−3)10270.85
    杨氏模量/GPa2.446
    泊松比0.318
    不锈钢密度/(kg ∙ m−3)7928.96
    杨氏模量/GPa172.0
    泊松比0.275
    弹簧片刚度/(N ∙ mm−1)14334.0
    刚凸刚度/(N ∙ m−1)381.0
    下载: 导出CSV

    表  2  瞬态计算参数设置

    Table  2.   Transient Calculation Parameter Setting

    参数名设置值
    瞬态总时间/s0.5
    时间步长/s0.001
    单时间步长最大迭代次数50
    下载: 导出CSV
  • [1] INTERNATIONAL ATOMIC ENERGY AGENCY. Review of Fuel Failures in Water Cooled Reactors: IAEA Nuclear Energy Series: No. NF-T-2.1[R]. Vienna, Austria: IAEA, 2010.
    [2] HU Z P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors[J]. Progress in Nuclear Energy, 2018, 106: 293-299. doi: 10.1016/j.pnucene.2018.03.015
    [3] RUBIOLO P R. Probabilistic prediction of fretting-wear damage of nuclear fuel rods[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1628-1640. doi: 10.1016/j.nucengdes.2006.04.023
    [4] RUBIOLO P R, YOUNG M Y. On the factors affecting the fretting-wear risk of PWR fuel assemblies[J]. Nuclear Engineering and Design, 2009, 239(1): 68-79. doi: 10.1016/j.nucengdes.2008.08.021
    [5] YAN J, YUAN K, TATLI E, et al. A new method to predict grid-to-rod fretting in a PWR fuel assembly inlet region[J]. Nuclear Engineering and Design, 2011, 241(8): 2974-2982. doi: 10.1016/j.nucengdes.2011.06.019
    [6] LIU H D, CHEN D Q, HU L, et al. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow[J]. Nuclear Engineering and Design, 2017, 325: 68-77. doi: 10.1016/j.nucengdes.2017.10.004
    [7] BAKOSI J, CHRISTON M A, LOWRIE R B, et al. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors[J]. Nuclear Engineering and Design, 2013, 262: 544-561. doi: 10.1016/j.nucengdes.2013.06.007
    [8] CHRISTON M A, LU R, BAKOSI J, et al. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors[J]. Journal of Computational Physics, 2016, 322: 142-161. doi: 10.1016/j.jcp.2016.06.042
    [9] KENNEDY J C, SOLBREKKEN G L. Coupled Fluid Structure Interaction (FSI) modeling of parallel plate assemblies[C]//ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011, 54907: 159-167.
    [10] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [11] 齐欢欢,冯志鹏,姜乃斌,等. 格架松弛对燃料棒湍流激励及微振磨损的影响研究[J]. 原子能科学技术,2018, 52(10): 1810-1816. doi: 10.7538/yzk.2018.youxian.0066
    [12] 敖翔. 非均匀来流下螺旋桨的流固耦合特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
    [13] 刘海东. 复杂结构燃料元件的流致振动特性数值研究[D]. 重庆: 重庆大学, 2018.
    [14] CIONCOLINI A, SILVA-LEON J, COOPER D, et al. Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications[J]. Nuclear Engineering and Design, 2018, 338: 102-118. doi: 10.1016/j.nucengdes.2018.08.010
    [15] CHOI M H, KANG H S, YOON K H, et al. Vibration analysis of a dummy fuel rod continuously supported by spacer grids[J]. Nuclear Engineering and Design, 2004, 232(2): 185-196. doi: 10.1016/j.nucengdes.2003.11.007
    [16] FERRARI G, BALASUBRAMANIAN P, LE GUISQUET S, et al. Non-linear vibrations of nuclear fuel rods[J]. Nuclear Engineering and Design, 2018, 338: 269-283. doi: 10.1016/j.nucengdes.2018.08.013
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  72
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-11-23
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回