高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大宽高比矩形窄缝通道沸腾起始点实验研究

曹乘雀 匡波 赵昱 邓坚 丁书华 吴丹

曹乘雀, 匡波, 赵昱, 邓坚, 丁书华, 吴丹. 大宽高比矩形窄缝通道沸腾起始点实验研究[J]. 核动力工程, 2023, 44(1): 24-31. doi: 10.13832/j.jnpe.2023.01.0024
引用本文: 曹乘雀, 匡波, 赵昱, 邓坚, 丁书华, 吴丹. 大宽高比矩形窄缝通道沸腾起始点实验研究[J]. 核动力工程, 2023, 44(1): 24-31. doi: 10.13832/j.jnpe.2023.01.0024
Cao Chengque, Kuang Bo, Zhao Yu, Deng Jian, Ding Shuhua, Wu Dan. Experimental Study on Onset of Boiling in Rectangular Narrow Channel with Large Aspect Ratio[J]. Nuclear Power Engineering, 2023, 44(1): 24-31. doi: 10.13832/j.jnpe.2023.01.0024
Citation: Cao Chengque, Kuang Bo, Zhao Yu, Deng Jian, Ding Shuhua, Wu Dan. Experimental Study on Onset of Boiling in Rectangular Narrow Channel with Large Aspect Ratio[J]. Nuclear Power Engineering, 2023, 44(1): 24-31. doi: 10.13832/j.jnpe.2023.01.0024

大宽高比矩形窄缝通道沸腾起始点实验研究

doi: 10.13832/j.jnpe.2023.01.0024
基金项目: 国家自然科学基金(U2067210))
详细信息
    作者简介:

    曹乘雀(1992—),男,博士研究生,现主要从事反应堆热工水力方面的研究,E-mail: caochengque@126.com

    通讯作者:

    匡 波,E-mail: bkuang@sjtu.edu.cn

  • 中图分类号: TL334

Experimental Study on Onset of Boiling in Rectangular Narrow Channel with Large Aspect Ratio

  • 摘要: 矩形窄缝通道中的泡核沸腾起始点(ONB)预测对反应堆安全设计十分重要。针对通道尺寸为$ 50\;\mathrm{ }\mathrm{m}\mathrm{m}\times 3\;\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{m}\mathrm{m}\times 1000\;\mathrm{m}\mathrm{m} $的竖直矩形窄通道,以去离子水为介质,通过监测壁面温度变化确认ONB的位置,研究了热流密度、质量流速、压力、入口过冷度等参数对ONB发生位置和壁面过热度的影响。收集并评价了已有的8个ONB预测模型,结合实验数据分析得到结论:基于池沸腾的ONB预测模型及其改进模型不能很好的适用于矩形窄通道内,尤其是针对质量流速带来的影响。一些针对矩形通道ONB预测开发的模型可以一定程度上反映ONB点壁面过热度随不同参数变化的发展趋势,但由于实验参数范围不够宽,适用范围和预测精度仍受到限制。结合影响矩形窄缝通道ONB发生的主要因素,推导了适用于计算宽谱参数工况下矩形窄通道中ONB点壁面过热度的解析解形式,并利用实验数据进行了拟合,新关系式超过95%的预测结果与实验结果偏差小于±20%。同时新关系式对其他相关公开文献的ONB数据预测仍在较好的误差范围内。

     

  • 图  1  实验回路示意图

    Figure  1.  Schematic Diagram of Experimental Circuit

    图  2  实验段段剖面图

    Figure  2.  Section of Test Section

    图  3  典型实验中ONB点位置的求取示意图

    Figure  3.  Schematic Diagram for Obtaining the Position of ONB Point in Typical Experiment

    图  4  热流密度与ONB关系

    q—热流密度

    Figure  4.  Relation between Heat Flux and ONB

    图  5  质量流速与ONB关系

    Figure  5.  Relation between Mass Flow Rate and ONB

    图  6  入口过冷度与ONB关系

    Figure  6.  Relation between Inlet Subcooling and ONB

    图  7  压力与ONB关系

    Figure  7.  Relation between Pressure and ONB

    图  8  经验关系式对压力敏感性的比较结果

    Figure  8.  Comparison Results of Pressure Sensitivity of Empirical Relationships

    图  9  经验关系式对质量流速敏感性的比较结果

    Figure  9.  Comparison Results of Mass Flow Rate Sensitivity of Empirical Relationships

    图  10  $ \xi \left(p\right) $与系统压力p关系

    Figure  10.  Relation between $ \xi \left(p\right) $ and System Pressure p

    图  11  新关系式预测结果与实验数据的关系

    Figure  11.  Relation between the Predicted Results of the New Relationship and the Experimental Data

    图  12  新关系式预测结果与文献数据关系

    Figure  12.  Predicted Results of the New Relationship vs. Other Literature’s Data

  • [1] KAYS W M, LONDON A L. Compact heat exchangers[M]. 3rd ed. New York: McGraw-Hill, 198: 1-11.
    [2] MCGLEN R J, JACHUCK R, LIN S. Integrated thermal management techniques for high power electronic devices[J]. Applied Thermal Engineering, 2004, 24(8-9): 1143-1156. doi: 10.1016/j.applthermaleng.2003.12.029
    [3] SOBIERSKA E, KULENOVIC R, MERTZ R, et al. Experimental results of flow boiling of water in a vertical microchannel[J]. Experimental Thermal and Fluid Science, 2006, 31(2): 111-119. doi: 10.1016/j.expthermflusci.2006.03.022
    [4] RIBEIRO F, DE CONDE K E, GARCIA E C, et al. Heat transfer performance enhancement in compact heat exchangers by the use of turbulators in the inner side[J]. Applied Thermal Engineering, 2020, 173: 115188. doi: 10.1016/j.applthermaleng.2020.115188
    [5] DE SILVA R P P, MORTEAN M V V, DE PAIVA K V, et al. Thermal and hydrodynamic analysis of a compact heat exchanger produced by additive manufacturing[J]. Applied Thermal Engineering, 2021, 193: 116973. doi: 10.1016/j.applthermaleng.2021.116973
    [6] CORNWELL K. Compact two-phase heat exchangers[R]. Final Report, CEC Contract No. JOU2-CT92-0045, 1995.
    [7] KEW P A, CORNWELL K. Correlations for the prediction of boiling heat transfer in small-diameter channels[J]. Applied Thermal Engineering, 1997, 17(8-10): 705-715. doi: 10.1016/S1359-4311(96)00071-3
    [8] HSU Y Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213. doi: 10.1115/1.3684339
    [9] BERGLES A E, ROHSENOW W M. The determination of forced-convection surface-boiling heat transfer[J]. Journal of Heat Transfer, 1964, 86(3): 365-372. doi: 10.1115/1.3688697
    [10] BOWRING R W. Physical model, based on bubble detachment, and calculation of steam voidage in he sub-cooled region of a heated channel: HPR-10[R]. Norway: Institutt for Atomenergi, 1962.
    [11] 潘良明. 垂直矩形窄缝流动过冷沸腾时的汽泡行为和换热[D]. 重庆: 重庆大学, 2002.
    [12] HONG G, YAN X, YANG Y H, et al. Experimental study on onset of nucleate boiling in narrow rectangular channel under static and heaving conditions[J]. Annals of Nuclear Energy, 2012, 39(1): 26-34. doi: 10.1016/j.anucene.2011.09.009
    [13] 郭昂,杨立新. 竖直矩形窄缝通道过冷流动沸腾的实验研究[J]. 工程热物理学报,2014, 35(9): 1836-1839.
    [14] SONG J H, LEE J, CHANG S H. Onset of Nucleate Boiling in narrow, rectangular channel for downward flow under low pressure[J]. Annals of Nuclear Energy, 2017, 109: 498-506. doi: 10.1016/j.anucene.2017.05.050
    [15] RABHI A, ASLANIDOU I, KYPRIANIDIS K, et al. Onset of nucleate boiling model for rectangular upward narrow channel: CFD based approach[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120715. doi: 10.1016/j.ijheatmasstransfer.2020.120715
    [16] PARK J H, PARK I, JO D. Statistical method for determining the onset of nucleate boiling under forced and natural convections in a rectangular channel[J]. Annals of Nuclear Energy, 2021, 150: 107863. doi: 10.1016/j.anucene.2020.107863
    [17] 程宁,郭赟,彭常宏,等. 竖直矩形流道中泡核沸腾起始点的研究[J]. 核技术,2019, 42(5): 050603.
    [18] WANG C, WANG H, WANG S W, et al. Experimental study of boiling incipience in vertical narrow rectangular channel[J]. Annals of Nuclear Energy, 2014, 66: 152-160. doi: 10.1016/j.anucene.2013.12.011
    [19] KANDLIKAR S G. Nucleation characteristics and stability considerations during flow boiling in microchannels[J]. Experimental Thermal and Fluid Science, 2006, 30(5): 441-447. doi: 10.1016/j.expthermflusci.2005.10.001
    [20] SU S Y. Experimental study of the onset of nucleate boiling in vertical narrow channels[J]. IOP Conference Series:Earth and Environmental Science, 2020, 514: 042036. doi: 10.1088/1755-1315/514/4/042036
    [21] COLLIER J G, THOME J R. Convective boiling and condensation[M]. 3rd ed. Oxford: Clarendon Press, 1994: 186-196.
    [22] CAREY V P. Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment[M]. 3rd ed. Boca Raton: CRC Press, 2020: 590-598.
    [23] DAVIS E J, ANDERSON G H. The incipience of nucleate boiling in forced convection flow[J]. AIChE Journal, 1966, 12(4): 774-780. doi: 10.1002/aic.690120426
    [24] LIANG Z H, WEN Y, GAO C, et al. Experimental investigation on flow and heat transfer characteristics of single-phase flow with simulated neutronic feedback in narrow rectangular channel[J]. Nuclear Engineering and Design, 2012, 248: 82-92. doi: 10.1016/j.nucengdes.2012.03.045
    [25] SUDO Y, MIYATA K, IKAWA H, et al. Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3[J]. Journal of Nuclear Science and Technology, 1986, 23(1): 73-82. doi: 10.1080/18811248.1986.9734950
    [26] AL-YAHIA O S, JO D. Onset of nucleate boiling for subcooled flow through a one-side heated narrow rectangular channel[J]. Annals of Nuclear Energy, 2017, 109: 30-40. doi: 10.1016/j.anucene.2017.05.014
  • 加载中
图(12)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  90
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 修回日期:  2022-05-21
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回