高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD方法的丝网芯内毛细流动阻力特性研究

余清远 赵鹏程 马誉高 张英楠

余清远, 赵鹏程, 马誉高, 张英楠. 基于CFD方法的丝网芯内毛细流动阻力特性研究[J]. 核动力工程, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054
引用本文: 余清远, 赵鹏程, 马誉高, 张英楠. 基于CFD方法的丝网芯内毛细流动阻力特性研究[J]. 核动力工程, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054
Yu Qingyuan, Zhao Pengcheng, Ma Yugao, Zhang Yingnan. Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method[J]. Nuclear Power Engineering, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054
Citation: Yu Qingyuan, Zhao Pengcheng, Ma Yugao, Zhang Yingnan. Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method[J]. Nuclear Power Engineering, 2023, 44(1): 54-59. doi: 10.13832/j.jnpe.2023.01.0054

基于CFD方法的丝网芯内毛细流动阻力特性研究

doi: 10.13832/j.jnpe.2023.01.0054
详细信息
    作者简介:

    余清远( 2000—),男,在读本科生,现主要从事核反应堆热工水力方面的研究, E-mail: 1838882338@qq.com

    通讯作者:

    赵鹏程,E-mail: zhaopengcheng1030@163.com

  • 中图分类号: TK172.4;TL364

Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method

  • 摘要: 丝网芯热管是一种基于两相流动相变循环原理设计的非能动输热设备,循环中的毛细力与流动阻力均与丝网芯结构密切相关,研究丝网芯的阻力特性对丝网芯结构选型与优化、热管性能提升具有重要的意义。本文基于计算流体力学(CFD)方法,建立丝网毛细流动的阻力模型,研究流体在多层丝网芯内的毛细流动的阻力特性。使用本文模型模拟毛细提升实验,模型与实验结果的相对误差小于5%。基于模型进一步分析堆叠结构及目数(50目、200目、400目)对丝网芯的流动阻力特性的影响。结果表明,堆叠丝网的网孔越密集流动阻力越大,粘性阻力系数近似与丝网目数呈正比,而等效惯性阻力也随丝网目数增加而增大;在雷诺数小于1的低流速区域,粘性阻力占据主导作用,而在雷诺数大于1的流速区域惯性阻力作用不可忽略;丝网芯的几何结构除影响流动阻力还将对毛细力产生影响。计算表明,丝网毛细压强和流动阻力均随丝网目数的增加而增强,毛细性能因子随目数的增加而增速放缓。考虑到平织丝网的工艺限制,400目丝网较为理想。

     

  • 图  1  丝网芯结构

    Figure  1.  Structure of Screen Wick

    图  2  多层丝网毛细提升实验装置示意图

    Figure  2.  Schematic Diagram of Multi-layer Screen Capillary Lifting Experimental Device

    图  3  多层丝网建模

    Figure  3.  Multi-layer Screen Modeling

    图  4  50目丝网芯内压力场和流速分布

    Figure  4.  Distribution of Pressure Field and Velocity Field in the Screen Wick (50 Mesh Number)

    图  5  惯性阻力与粘性阻力的比较

    Figure  5.  Comparison of Inertial Resistance and Viscous Resistance      

    图  6  毛细提升高度实验与模型的比较

    Figure  6.  Comparison between Capillary Lifting Height Experiment and Model

    图  7  不同目数堆叠丝网的等效粘性阻力系数和等效惯性阻力系数对比

    Figure  7.  Comparison of Equivalent Viscous Resistance Coefficient and Equivalent Inertial Resistance Coefficient of Stacked Screen with Different Mesh Numbers

    图  8  不同目数丝网的毛细压强与毛细性能因子

    Figure  8.  Capillary Pressure and Capillary Performance Factor of Screen with Different Mesh Numbers

    表  1  不同目数下的丝网结构参数

    Table  1.   Structural Parameters of Screen under Different Mesh Numbers

    丝网类型目数w/mmd/mm特征尺寸/mm
    平织丝网500.20.3080.254
    平织丝网2000.050.0770.0635
    平织丝网4000.0180.04550.03175
      特征尺寸—(w+d)/2
    下载: 导出CSV

    表  2  50目丝网芯内速度与压降关系

    Table  2.   Relationship between Velocity and Pressure Drop in the Screen Wick under 50 Mesh Number

    速度/(m·s−1)压降/Pa等效惯性阻力系数等效粘性阻力系数
    5.67×10−50.576.45×1038.86×108
    1.89×10−41.89
    5.67×10−45.68
    1.89×10−318.94
    5.67×10−357.07
    下载: 导出CSV

    表  3  200目丝网芯内速度与压降关系

    Table  3.   Relationship between Velocity and Pressure Drop in the Screen Wick under 200 Mesh Number

    速度/(m·s−1)压降/Pa等效惯性阻力系数等效粘性阻力系数
    9.10×10−51.512.32×1041.47×1010
    3.02×10−45.03
    9.10×10−415.08
    3.02×10−350.29
    9.10×10−3151.03
    下载: 导出CSV

    表  4  400目丝网芯内速度与压降关系

    Table  4.   Relationship between Velocity and Pressure Drop in the Screen Wick under 400 Mesh Number

    速度/(m·s−1)压降/Pa等效惯性阻力系数等效粘性阻力系数
    5.00×10−4257.903.12×1044.57×1010
    5.00×10−425.79
    1.66×10−385.96
    1.66×10−2860.10
    5.00×10−22588.15
    下载: 导出CSV
  • [1] FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407
    [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [3] WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299
    [4] CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038
    [5] CHOI J, SANO W, ZHANG W J, et al. Experimental investigation on sintered porous wicks for miniature loop heat pipe applications[J]. Experimental Thermal and Fluid Science, 2013, 51: 271-278. doi: 10.1016/j.expthermflusci.2013.08.009
    [6] 马同泽,汪肇平,赵嘉琪. 热管网状毛细芯毛细力及渗透率研究[J]. 工程热物理学报,1980, 1(2): 156-164.
    [7] RYBKIN B I, SERGEEV Y Y, SIDORENKO E M, et al. Investigation of the coolant edge wetting angle for mesh heat pipe wicks[J]. Journal of Engineering Physics, 1979, 36(4): 408-413. doi: 10.1007/BF00866962
    [8] CANTI G, CELATA G P, CUMO M, et al. Thermal hydraulic characterization of stainless steel wicks for heat pipe applications[J]. Revue Générale de Thermique, 1998, 37(1): 5-16.
    [9] TANG Y, DENG D X, LU L S, et al. Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 190-196. doi: 10.1016/j.expthermflusci.2009.10.016
    [10] CHAMARTHY P, DE BOCK H P J, RUSS B, et al. Novel fluorescent visualization method to characterize transport properties in micro/Nano heat pipe wick structures[C]//Proceedings of the ASME 2009 InterPACK Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 419-425.
    [11] LI J W, ZOU Y, CHENG L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1403-1408. doi: 10.1016/j.expthermflusci.2010.06.016
    [12] ERGUN S. Fluid flow through packed columns[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89-94.
    [13] PARTHASARATHY P, HABISREUTHER P, ZARZALIS N. A study of pressure drop in reticulated ceramic sponges using direct pore level simulation[J]. Chemical Engineering Science, 2016, 147: 91-99. doi: 10.1016/j.ces.2016.03.015
    [14] RAMBABU S, KARTIK SRIRAM K, CHAMARTHY S, et al. A proposal for a correlation to calculate pressure drop in reticulated porous media with the help of numerical investigation of pressure drop in ideal & randomized reticulated structures[J]. Chemical Engineering Science, 2021, 237: 116518. doi: 10.1016/j.ces.2021.116518
    [15] LI G Y, HUANG Y Y, HAN W, et al. Pressure drop prediction with an analytical structure-property model for fluid through porous media[J]. Fractals, 2021, 29(7): 2150184. doi: 10.1142/S0218348X2150184X
    [16] IMURA H, KOZAI H, IKEDA Y. The effective pore radius of screen wicks[J]. Heat Transfer Engineering, 1994, 15(4): 24-32. doi: 10.1080/01457639408939834
    [17] 周常新, 范利颋, 袁希钢, 等. 乙醇及正丙醇水溶液与金属表面接触角测量[C]//中国化工学会. 第二届全国塔器及塔内件技术研讨会会议论文集. 北京: 化学工业出版社, 2007: 75-80.
    [18] ZHANG J, LIAN L X, LIU Y, et al. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536
    [19] SHIRAZY M R S, FRÉCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 282-291. doi: 10.1016/j.ijheatmasstransfer.2012.11.031
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  110
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-04-10
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回