Study on Resistance Characteristics of Capillary Flow in Screen Wick Based on CFD Method
-
摘要: 丝网芯热管是一种基于两相流动相变循环原理设计的非能动输热设备,循环中的毛细力与流动阻力均与丝网芯结构密切相关,研究丝网芯的阻力特性对丝网芯结构选型与优化、热管性能提升具有重要的意义。本文基于计算流体力学(CFD)方法,建立丝网毛细流动的阻力模型,研究流体在多层丝网芯内的毛细流动的阻力特性。使用本文模型模拟毛细提升实验,模型与实验结果的相对误差小于5%。基于模型进一步分析堆叠结构及目数(50目、200目、400目)对丝网芯的流动阻力特性的影响。结果表明,堆叠丝网的网孔越密集流动阻力越大,粘性阻力系数近似与丝网目数呈正比,而等效惯性阻力也随丝网目数增加而增大;在雷诺数小于1的低流速区域,粘性阻力占据主导作用,而在雷诺数大于1的流速区域惯性阻力作用不可忽略;丝网芯的几何结构除影响流动阻力还将对毛细力产生影响。计算表明,丝网毛细压强和流动阻力均随丝网目数的增加而增强,毛细性能因子随目数的增加而增速放缓。考虑到平织丝网的工艺限制,400目丝网较为理想。Abstract: Screen wick heat pipe is a kind of passive heat transfer equipment based on the principle of two-phase flow phase change cycle. The capillary force and flow resistance in the cycle are closely related to the structure of the screen wick. The study of the resistance characteristics of the screen wick is of great significance to the selection and optimization of the screen wick structure and the improvement of the heat pipe performance. Based on computational fluid dynamics (CFD), a resistance model of capillary flow in screen is established to study the resistance characteristics of capillary flow in multi-layer wire screen wick. The model is used to simulate the capillary lifting experiment, and the relative error between the model and the experimental results is less than 5%. Based on the model, the effects of stacking structure and mesh number (50 mesh, 200 mesh, 400 mesh) on the flow resistance characteristics of screen wick are further analyzed. The results show that the denser the mesh is, the greater the flow resistance is, the viscous resistance coefficient is approximately proportional to the mesh number, and the equivalent inertia resistance increases with the increase of the mesh number. In the low velocity region where Reynolds number is less than 1, viscous resistance plays a dominant role, while in the velocity region where Reynolds number is greater than 1, inertia resistance cannot be ignored; The geometric structure of the screen wick not only affects the flow resistance, but also affects the capillary force. The calculation shows that the capillary pressure and flow resistance of the screen increase with the increase of mesh number, and the capillary performance factor slows down with the increase of mesh number. Considering the process limitation of plain woven screen, 400 mesh screen is ideal.
-
Key words:
- Screen wick /
- Flow resistance /
- Viscous resistance /
- Inertial resistance /
- Capillary performance factor
-
表 1 不同目数下的丝网结构参数
Table 1. Structural Parameters of Screen under Different Mesh Numbers
丝网类型 目数 w/mm d/mm 特征尺寸/mm 平织丝网 50 0.2 0.308 0.254 平织丝网 200 0.05 0.077 0.0635 平织丝网 400 0.018 0.0455 0.03175 特征尺寸—(w+d)/2 表 2 50目丝网芯内速度与压降关系
Table 2. Relationship between Velocity and Pressure Drop in the Screen Wick under 50 Mesh Number
速度/(m·s−1) 压降/Pa 等效惯性阻力系数 等效粘性阻力系数 5.67×10−5 0.57 6.45×103 8.86×108 1.89×10−4 1.89 5.67×10−4 5.68 1.89×10−3 18.94 5.67×10−3 57.07 表 3 200目丝网芯内速度与压降关系
Table 3. Relationship between Velocity and Pressure Drop in the Screen Wick under 200 Mesh Number
速度/(m·s−1) 压降/Pa 等效惯性阻力系数 等效粘性阻力系数 9.10×10−5 1.51 2.32×104 1.47×1010 3.02×10−4 5.03 9.10×10−4 15.08 3.02×10−3 50.29 9.10×10−3 151.03 表 4 400目丝网芯内速度与压降关系
Table 4. Relationship between Velocity and Pressure Drop in the Screen Wick under 400 Mesh Number
速度/(m·s−1) 压降/Pa 等效惯性阻力系数 等效粘性阻力系数 5.00×10−4 257.90 3.12×104 4.57×1010 5.00×10−4 25.79 1.66×10−3 85.96 1.66×10−2 860.10 5.00×10−2 2588.15 -
[1] FAGHRI A. Review and advances in heat pipe science and technology[J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407 [2] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001 [3] WANG C L, TANG S M, LIU X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299. doi: 10.1016/j.applthermaleng.2020.115299 [4] CHAUDHRY H N, HUGHES B R, GHANI S A. A review of heat pipe systems for heat recovery and renewable energy applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(4): 2249-2259. doi: 10.1016/j.rser.2012.01.038 [5] CHOI J, SANO W, ZHANG W J, et al. Experimental investigation on sintered porous wicks for miniature loop heat pipe applications[J]. Experimental Thermal and Fluid Science, 2013, 51: 271-278. doi: 10.1016/j.expthermflusci.2013.08.009 [6] 马同泽,汪肇平,赵嘉琪. 热管网状毛细芯毛细力及渗透率研究[J]. 工程热物理学报,1980, 1(2): 156-164. [7] RYBKIN B I, SERGEEV Y Y, SIDORENKO E M, et al. Investigation of the coolant edge wetting angle for mesh heat pipe wicks[J]. Journal of Engineering Physics, 1979, 36(4): 408-413. doi: 10.1007/BF00866962 [8] CANTI G, CELATA G P, CUMO M, et al. Thermal hydraulic characterization of stainless steel wicks for heat pipe applications[J]. Revue Générale de Thermique, 1998, 37(1): 5-16. [9] TANG Y, DENG D X, LU L S, et al. Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 190-196. doi: 10.1016/j.expthermflusci.2009.10.016 [10] CHAMARTHY P, DE BOCK H P J, RUSS B, et al. Novel fluorescent visualization method to characterize transport properties in micro/Nano heat pipe wick structures[C]//Proceedings of the ASME 2009 InterPACK Conference Collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. San Francisco: ASME, 2009: 419-425. [11] LI J W, ZOU Y, CHENG L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1403-1408. doi: 10.1016/j.expthermflusci.2010.06.016 [12] ERGUN S. Fluid flow through packed columns[J]. Journal of Chemical Engineering Progress, 1952, 48(2): 89-94. [13] PARTHASARATHY P, HABISREUTHER P, ZARZALIS N. A study of pressure drop in reticulated ceramic sponges using direct pore level simulation[J]. Chemical Engineering Science, 2016, 147: 91-99. doi: 10.1016/j.ces.2016.03.015 [14] RAMBABU S, KARTIK SRIRAM K, CHAMARTHY S, et al. A proposal for a correlation to calculate pressure drop in reticulated porous media with the help of numerical investigation of pressure drop in ideal & randomized reticulated structures[J]. Chemical Engineering Science, 2021, 237: 116518. doi: 10.1016/j.ces.2021.116518 [15] LI G Y, HUANG Y Y, HAN W, et al. Pressure drop prediction with an analytical structure-property model for fluid through porous media[J]. Fractals, 2021, 29(7): 2150184. doi: 10.1142/S0218348X2150184X [16] IMURA H, KOZAI H, IKEDA Y. The effective pore radius of screen wicks[J]. Heat Transfer Engineering, 1994, 15(4): 24-32. doi: 10.1080/01457639408939834 [17] 周常新, 范利颋, 袁希钢, 等. 乙醇及正丙醇水溶液与金属表面接触角测量[C]//中国化工学会. 第二届全国塔器及塔内件技术研讨会会议论文集. 北京: 化学工业出版社, 2007: 75-80. [18] ZHANG J, LIAN L X, LIU Y, et al. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120536. doi: 10.1016/j.ijheatmasstransfer.2020.120536 [19] SHIRAZY M R S, FRÉCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 282-291. doi: 10.1016/j.ijheatmasstransfer.2012.11.031 -