高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型压水堆抑压特性试验与数值模拟研究

邱志方 郭容达 曹学武 余红星 孙洪平 罗跃建

邱志方, 郭容达, 曹学武, 余红星, 孙洪平, 罗跃建. 小型压水堆抑压特性试验与数值模拟研究[J]. 核动力工程, 2023, 44(1): 60-66. doi: 10.13832/j.jnpe.2023.01.0060
引用本文: 邱志方, 郭容达, 曹学武, 余红星, 孙洪平, 罗跃建. 小型压水堆抑压特性试验与数值模拟研究[J]. 核动力工程, 2023, 44(1): 60-66. doi: 10.13832/j.jnpe.2023.01.0060
Qiu Zhifang, Guo Rongda, Cao Xuewu, Yu Hongxing, Sun Hongping, Luo Yuejian. Experimental and Numerical Simulation Study on Pressure Suppression Characteristics of Small PWR[J]. Nuclear Power Engineering, 2023, 44(1): 60-66. doi: 10.13832/j.jnpe.2023.01.0060
Citation: Qiu Zhifang, Guo Rongda, Cao Xuewu, Yu Hongxing, Sun Hongping, Luo Yuejian. Experimental and Numerical Simulation Study on Pressure Suppression Characteristics of Small PWR[J]. Nuclear Power Engineering, 2023, 44(1): 60-66. doi: 10.13832/j.jnpe.2023.01.0060

小型压水堆抑压特性试验与数值模拟研究

doi: 10.13832/j.jnpe.2023.01.0060
详细信息
    作者简介:

    邱志方(1985—),男,正高级工程师,现主要从事反应堆安全分析研究工作,E-mail: qzf_npic@163.com

  • 中图分类号: TL333

Experimental and Numerical Simulation Study on Pressure Suppression Characteristics of Small PWR

  • 摘要: 为了研究小型压水堆抑压系统的抑压效果,建立了小型安全壳抑压特性试验装置,开展了定流量和变流量混合气体排放实验,以研究气-水容积比和不可凝气体对抑压效果的影响。实验结果表明,气-水容积比在2~4.55范围内,随着气-水容积比的增大,抑压效果逐渐增强;混合气体中不可凝气体含量对抑压效果影响显著。对实验进行了数值模拟,模拟结果可以反映抑压试验的现象规律,但仍需进一步优化抑压冷凝相关模型以提高模拟精度。

     

  • 图  1  实验系统示意图

    Figure  1.  Schematic Diagram of Experimental System

    图  2  实验装置控制体节点划分示意图

    Figure  2.  Schematic Diagram of Node Division of Experimental Device Control Volume

    图  3  抑压水箱水池温度变化(工况1、2、3)

    Figure  3.  Temperature Change of Pressure Suppression Water Tank(Conditions 1, 2 and 3)

    图  4  抑压水箱气空间压力变化(工况1、2、3)

    Figure  4.  Gaseous Space Pressure Change of Pressure Suppression Water Tank (Conditions 1, 2 and 3)

    图  5  安全壳内压力变化(工况6、7)

    Figure  5.  Pressure Change in Containment (Conditions 6 and 7)

    图  6  抑压水箱气空间压力变化(工况6、7)

    Figure  6.  Gaseous Space Pressure Change of Pressure Suppression Water Tank (Conditions 6 and 7)

    图  7  抑压水箱水池温度变化(工况6、7)

    Figure  7.  Temperature Change of Pressure Suppression Water Tank (Conditions 6 and 7)

    图  8  排放混合气体总质量变化(工况6、7)

    Figure  8.  Total Mass Change of Exhaust Gas Mixture (Conditions 6 and 7)       

    图  9  抑压水箱气空间压力变化(工况1、4、5)

    Figure  9.  Gaseous Space Pressure Change of Pressure Suppression Water Tank (Conditions 1, 4 and 5)

    图  10  安全壳内压力变化(工况6、7、8)

    Figure  10.  Pressure Change in Containment (Conditions 6, 7 and 8)     

    图  11  抑压水箱气空间压力变化(工况6、7、8)

    Figure  11.  Gaseous Space Pressure Change of Pressure Suppression Water Tank (Conditions 6, 7 and 8)

    图  12  抑压水箱水池温度变化(工况6、7、8)

    Figure  12.  Temperature Change of Pressure Suppression Water Tank (Conditions 6, 7 and 8)

    图  13  蒸汽份额对安全壳内压力的影响

    Figure  13.  Effect of Steam Fraction on Pressure in Containment          

    表  1  定流量下试验工况

    Table  1.   Test Condition under Constant Flow

    工况序号工况类型气-水容积比浸没深度/m蒸汽流量/(g·s−1)氮气流量/(g·s−1)工质温度/℃
    工况1基准工况4.550.62191170
    工况2气-水容积比比对工况30.62191170
    工况320.62191170
    工况4不可凝气体影响比对工况4.550.62200170
    工况54.550.62382170
    下载: 导出CSV

    表  2  变流量下试验工况

    Table  2.   Test Condition under Variable Flow

    工况序号工况类型气-水容积比浸没深度/m蒸汽体积份额/%安全壳压力/kPa工质温度/℃
    工况6基准工况4.550.6288500152
    工况7气-水容积比比对工况20.6288500152
    工况8不可凝气体影响比对工况30.6292500152
    下载: 导出CSV
  • [1] MEIER M. Numerical and experimental study of large steam-air bubbles injected in a water pool[D]. Swiss: Swiss Federal Institute of Technology, 1999.
    [2] A Group of Experts of the NEA/CSNI. Pressure suppression system containments: a state-of-the-art report[R]. Paris: Committee on the Safety of Nuclear Installations OECD Nuclear Energy Agency, 1986.
    [3] BROSCHE D. A model for the calculation of vent clearing transients in pressure suppression systems[J]. Nuclear Engineering and Design, 1976, 38(1): 131-141.
    [4] MOODY F J. Dynamic and thermal behavior of hot gas bubbles discharged into water[J]. Nuclear Engineering and Design, 1986, 95: 47-54.
    [5] NORMAN T L. Steam-air mixture condensation in a subcooled water pool[D]. West Lafayette: Purdue University, 2007.
    [6] GAMBLE R E, NGUYEN T N, SHIRALKAR B S, et al. Pressure suppression pool mixing in passive advanced BWR plants[J]. Nuclear Engineering and Design, 2001, 204(1-3): 321-336. doi: 10.1016/S0029-5493(00)00363-0
    [7] KLJENAK I, MAVKO B. Simulation of containment thermal-hydraulics in the Marviken Blowdown 16 experiment with ASTEC and CONTAIN codes[J]. Nuclear Engineering and Design, 2011, 241(4): 1063-1070. doi: 10.1016/j.nucengdes.2010.06.015
    [8] PUUSTINEN M, LAINE J, RÄSÄNE A. PPOOLEX experiments on thermal stratification and mixing: NKS-198[R]. Roskilde: Nordisk Kernesikkerhedsforskning, 2009.
    [9] 陈耀峰,王升飞,方圆,等. LOCA下小型抑压式安全壳内流动与传热现象初步研究[J]. 核科学与工程,2021, 41(2): 402-409. doi: 10.3969/j.issn.0258-0918.2021.02.028
    [10] 郭景新,郭张鹏,蔡孝玉,等. 基于正交试验的抑压水池抑压特性研究[J]. 核科学与工程,2021, 41(4): 838-843. doi: 10.3969/j.issn.0258-0918.2021.04.024
    [11] 蒋孝蔚,邓坚,余红星,等. 小型压水堆安全壳抑压传热研究[J]. 核动力工程,2018, 39(S1): 66-69. doi: 10.13832/j.jnpe.2018.S1.0066
    [12] BERNA C, ESCRIVÁ A, MUÑOZ-COBO J L, et al. Enhancement of the SPARC90 code to pool scrubbing events under jet injection regime[J]. Nuclear Engineering and Design, 2016, 300: 563-577. doi: 10.1016/j.nucengdes.2016.02.027
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1865
  • HTML全文浏览量:  99
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-04-04
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回