高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融物材料扩散系数的从头算分子动力学计算

徐博 赵龙 邓俊楷 黎阳 郭可蓉 宫厚军

徐博, 赵龙, 邓俊楷, 黎阳, 郭可蓉, 宫厚军. 熔融物材料扩散系数的从头算分子动力学计算[J]. 核动力工程, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073
引用本文: 徐博, 赵龙, 邓俊楷, 黎阳, 郭可蓉, 宫厚军. 熔融物材料扩散系数的从头算分子动力学计算[J]. 核动力工程, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073
Xu Bo, Zhao Long, Deng Junkai, Li Yang, Guo Kerong, Gong Houjun. Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials[J]. Nuclear Power Engineering, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073
Citation: Xu Bo, Zhao Long, Deng Junkai, Li Yang, Guo Kerong, Gong Houjun. Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials[J]. Nuclear Power Engineering, 2023, 44(1): 73-78. doi: 10.13832/j.jnpe.2023.01.0073

熔融物材料扩散系数的从头算分子动力学计算

doi: 10.13832/j.jnpe.2023.01.0073
基金项目: 国家重点研发计划(2018YFB1900104)
详细信息
    作者简介:

    徐 博(1996—),男,博士研究生,现从事第一性原理计算方面的研究,E-mail: xubooo@stu.xjtu.edu.cn

    通讯作者:

    邓俊楷,E-mail: junkai.deng@mail.xjtu.edu.cn

  • 中图分类号: TL341

Ab Initio Molecular Dynamics Calculation of Diffusion Coefficients of Molten Materials

  • 摘要: 为获得核反应堆严重事故后期反应堆压力容器(RPV)下腔室内熔融物微观组织的演化规律,需要对熔融物的材料物理性质进行研究。以熔融池中发生熔化过程的实际材料,包括燃料芯块UO2、包壳管熔融后的U-Zr-O材料以及不锈钢构件熔融后的U-Fe-O材料为研究对象,采用基于第一性原理的从头算分子动力学模拟了熔融物材料高温液态下的原子扩散行为。研究结果表明,在高温液相中的U、Zr、Fe、O的原子扩散系数与原子质量呈负相关,且在相同温度下受组分的影响较小,仍保持相对稳定的比例关系。不同原子扩散系数的差异理论上会导致熔融池形成分层结构,因此,可对比上述3种材料在高温液态下各种原子的扩散系数,确定直接的量化关系,为在大尺度下进一步研究熔融物微观组织的演化奠定基础。

     

  • 图  1  熔融物材料UO2、UZrO4、UFeO4的原子超胞结构

    Figure  1.  Atomic Supercells of Molten Materials, UO2, UZrO4 and UFeO4

    图  2  UO2高温熔化过程的原子结构和RDF

    g(r)—RDF

    Figure  2.  Atomic Structure and RDF of UO2 in High Temperature Melting Process

    图  3  UZrO4高温熔化过程的原子结构和RDF

    Figure  3.  Atomic Structure and RDF of UZrO4 in High Temperature Melting Process

    图  4  UFeO4高温熔化过程的原子结构和RDF

    Figure  4.  Atomic Structure and RDF of UFeO4in High Temperature Melting Process

    图  5  3种熔融物液态下原子的MSD

    Figure  5.  MSD of Atoms in the Liquid State of Three Molten Materials

    表  1  3种超胞的晶格常数

    Table  1.   Lattice Constants of Three Supercells

    超胞类型 a/Å b/Å c/Å
    UO2 10.750 10.750 10.750
    UZrO4 14.963 7.481 18.011
    UFeO4 9.756 10.214 11.239
      1 Å=10−10 m;a、b、c—晶格xyz三个方向的晶格常数
    下载: 导出CSV

    表  2  U、Zr、Fe、O原子在高温液相下的扩散系数

    Table  2.   The Diffusion Coefficient of U, Zr, Fe and O Atoms in High-temperature Liquid Phase

    原子类型 U Zr Fe O
    扩散系数/( ${10^{ - 8} }{\text{ } }{ {\text{m} }^{\text{2} } } \cdot { {\text{s} }^{ {{ - 1} } } }$) 0.84 0.63 1.15 1.55
    下载: 导出CSV
  • [1] ESMAILI H, KHATIB-RAHBAR M. Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000[J]. Nuclear Engineering and Design, 2005, 235(15): 1583-1605. doi: 10.1016/j.nucengdes.2005.02.003
    [2] 傅孝良,杨燕华,周卫华,等. CPR1000的IVR有效性评价中堆芯熔化及熔池形成过程分析[J]. 核动力工程,2010, 31(5): 102-107.
    [3] BOTTOMLEY P D W, MURRAY-FARTHING M, MANARA D, et al. Investigations of the melting behaviour of the U-Zr-Fe-O system[J]. Journal of Nuclear Science and Technology, 2015, 52(10): 1217-1225. doi: 10.1080/00223131.2015.1023381
    [4] FUKASAWA M, TAMURA S, HASEBE M. Development of thermodynamic database for U-Zr-Fe-O-B-C-FPs system[J]. Journal of Nuclear Science and Technology, 2005, 42(8): 706-716. doi: 10.1080/18811248.2004.9726440
    [5] SKINNER L B, BENMORE C J, WEBER J K R, et al. Molten uranium dioxide structure and dynamics[J]. Science, 2014, 346(6212): 984-987. doi: 10.1126/science.1259709
    [6] BEIGBEDER T, BOURASSEAU E, RUSHTON M. Thermophysical properties of liquid (U, Zr)O2 by molecular dynamics[J]. Molecular Simulation, 2021, 47(18): 1502-1508. doi: 10.1080/08927022.2021.1987429
    [7] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. doi: 10.1103/PhysRev.136.B864
    [8] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. doi: 10.1103/PhysRev.140.A1133
    [9] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561. doi: 10.1103/PhysRevB.47.558
    [10] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. doi: 10.1016/0927-0256(96)00008-0
    [11] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. doi: 10.1063/1.447334
    [12] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, 1988, 38(6): 3098-3100. doi: 10.1103/PhysRevA.38.3098
    [13] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [14] LANGRETH D C, MEHL M J. Beyond the local-density approximation in calculations of ground-state electronic properties[J]. Physical Review B, 1983, 28(4): 1809-1834. doi: 10.1103/PhysRevB.28.1809
    [15] PRIEUR D, DESAGULIER M M, NEUVILLE D R, et al. A spectroscopic hike in the U-O phase diagram[J]. Journal of Synchrotron Radiation, 2021, 28(6): 1684-1691. doi: 10.1107/S1600577521010572
    [16] GÜNAY S D, AKDERE Ü, TAŞSEVEN Ç. Hypernetted chain calculations of molten uranium dioxide: comparison of rigid ion potentials[J]. Journal of Molecular Liquids, 2012, 173: 124-129. doi: 10.1016/j.molliq.2012.06.028
    [17] FROST D G, GALVIN C O T, COOPER M W D, et al. Thermophysical properties of urania-zirconia (U, Zr)O2 mixed oxides by molecular dynamics[J]. Journal of Nuclear Materials, 2020, 528: 151876. doi: 10.1016/j.jnucmat.2019.151876
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  37
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-07-28
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回