高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷却剂丧失事故下稳压器波动管及人孔结构的失效机理研究

余航 赵新文 傅晟威 朱康

余航, 赵新文, 傅晟威, 朱康. 冷却剂丧失事故下稳压器波动管及人孔结构的失效机理研究[J]. 核动力工程, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109
引用本文: 余航, 赵新文, 傅晟威, 朱康. 冷却剂丧失事故下稳压器波动管及人孔结构的失效机理研究[J]. 核动力工程, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109
Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA[J]. Nuclear Power Engineering, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109
Citation: Yu Hang, Zhao Xinwen, Fu Shengwei, Zhu Kang. Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA[J]. Nuclear Power Engineering, 2023, 44(1): 109-117. doi: 10.13832/j.jnpe.2023.01.0109

冷却剂丧失事故下稳压器波动管及人孔结构的失效机理研究

doi: 10.13832/j.jnpe.2023.01.0109
详细信息
    作者简介:

    余 航(1994—),男,博士研究生,现主要从事核安全工程研究,E-mail: 870021295@qq.com

    通讯作者:

    傅晟威,E-mail: 44986199@qq.com

  • 中图分类号: TL353+.11

Study on Failure Mechanism of Pressurizer Surge Line and Manhole Structure under LOCA

  • 摘要: 稳压器是核反应堆进行压力控制和保护的重要设备,冷却剂丧失事故(LOCA)产生的巨大冲击可能造成其关键部位的结构失效。通过多场耦合计算方法,对小破口LOCA下稳压器波动管的流动传热和结构应力、人孔结构的温度分布和密封性能进行了三维瞬态数值模拟,分析了其失效机理。结果表明:高温流体快速流入波动管形成了巨大的瞬时载荷,造成了管道短时间的强烈振动,管道中间部位变形最大,可能破坏管道支撑结构;各部位等效应力快速增大,与主管道的接管部位出现了集中应力现象,较大的应力波动会影响其寿命;人孔结构出现较大的温度分布不均匀性,密封结构下垫片的密封性能变化最大,在100 s前后其内、外侧密封面接触压力都降至设计密封比压值以下,即出现泄漏。本文根据分析结果提出了波动管和人孔结构的改进建议,可为船用核动力装置发生小破口LOCA后的事故缓解提供技术借鉴。

     

  • 图  1  波动管全尺寸三维模型

    Figure  1.  Full-size 3D Model of Surge Line

    图  2  人孔结构三维模型

    Figure  2.  3D Model of Manhole Structure

    图  3  波动管网格

    Figure  3.  Mesh of Surge Line

    图  4  不同网格数量下弯管1内外壁面温差

    Figure  4.  Temperature Difference between Inner and Outer Walls of Elbow 1 with Different Grid Numbers

    图  5  人孔结构网格

    Figure  5.  Mesh of Manhole Structure

    图  6  不同网格数量下上垫片最大温差

    Figure  6.  Maximum Temperature Difference of Upper Gasket with Different Grid Numbers

    图  7  稳压器内部压力和温度变化

    Figure  7.  Variation of Pressure and Temperature in Pressurizer

    图  8  波动管靠稳压器侧流体流量变化

    Figure  8.  Variation of Fluid Flow of Surge Line near the Pressurizer Side

    图  9  波动管与主管路接口靠压力容器侧流体流量和温度变化      

    Figure  9.  Variation of Fluid Flow and Temperature on the Side of Pressure Vessel at the Interface between Surge Line and Main Pipeline

    图  10  波动管各部位内壁面温度分布

    Figure  10.  Temperature Distribution on the Inner Wall of Surge Line’s Each Part

    图  11  波动管各部位内外壁面温差变化

    Figure  11.  Changes of Temperature Difference between Inner and Outer Walls of Surge Line’s Each Part

    图  12  接管部位方位设置

    Figure  12.  Position Setting at T-junction

    图  13  接管部位内外壁面温差变化

    Figure  13.  Changes of Temperature Difference between Inner and Outer Walls at Nozzle

    图  14  150 s时波动管变形分布

    Figure  14.  Deformation Distribution of Surge Line at 150 s

    图  15  弯管3在XYZ方向位移变化

    Figure  15.  Displacement Variation of Elbow 3 in X, Y and Z Directions

    图  16  弯管3在XYZ方向位移振动频域图

    Figure  16.  Vibration Frequency Domain Diagram of Displacement of Elbow 3 in X, Y and Z Directions

    图  17  压力和温度波动对弯管3在X方向位移的影响

    Figure  17.  Influence of Pressure and Temperature Fluctuation on Displacement of Elbow 3 in X Direction

    图  18  接管部位等效应力分布

    Figure  18.  Equivalent Stress Distribution at Nozzle

    图  19  接管部位出口侧沿厚度方向等效应力分布

    Figure  19.  Equivalent Stress Distribution along Thickness Direction at Outlet Side of Nozzle

    图  20  波动管各部位最大等效应力变化

    Figure  20.  Maximum Equivalent Stress Change of Each Part of Surge Line       

    图  21  540 s时各部件温度分布

    Figure  21.  Temperature Distribution of Each Part at 540 s

    图  22  上、下垫片最大温差变化

    Figure  22.  Maximum Temperature Difference between Upper and Lower Gaskets

    图  23  下垫片密封面最大接触压力变化

    Figure  23.  Maximum Contact Pressure Variation of Lower Gasket Sealing Surface

  • [1] QIAO S X, GU H F, WANG H J, et al. Experimental investigation of thermal stratification in a pressurizer surge line[J]. Annals of Nuclear Energy, 2014, 73: 211-217. doi: 10.1016/j.anucene.2014.06.045
    [2] CAI B A, WENG Y, WANG Y Y, et al. Experimental investigation on thermal stratification in a pressurizer surge line with different arrangements[J]. Progress in Nuclear Energy, 2017, 98: 239-247. doi: 10.1016/j.pnucene.2017.03.029
    [3] TANG B, ZHOU Y. Numerical investigation on turbulent penetration and thermal stratification for the in-surge case of the AP1000 pressurizer surge line[J]. Nuclear Engineering and Design, 2021, 378: 111176. doi: 10.1016/j.nucengdes.2021.111176
    [4] WANG M J, FENG T T, FANG D, et al. Numerical study on the thermal stratification characteristics of AP1000 pressurizer surge line[J]. Annals of Nuclear Energy, 2019, 130: 8-19. doi: 10.1016/j.anucene.2019.01.054
    [5] 王大胜,刘攀,王海军,等. 稳压器波动管不同布置方式对热分层现象的影响[J]. 原子能科学技术,2015, 49(7): 1232-1236. doi: 10.7538/yzk.2015.49.07.1232
    [6] 郭超,温丽晶,刘宇生,等. 瞬态工况下压水堆稳压器波动管热分层现象数值模拟[J]. 原子能科学技术,2015, 49(1): 58-63. doi: 10.7538/yzk.2015.49.01.0058
    [7] 梁兵兵,李岗,王高阳. 稳压器波动管考虑热分层影响的疲劳分析[J]. 原子能科学技术,2008, 42(S2): 448-453.
    [8] KANG D G, JHUNG M J, CHANG S H. Fluid–structure interaction analysis for pressurizer surge line subjected to thermal stratification[J]. Nuclear Engineering and Design, 2011, 241(1): 257-269. doi: 10.1016/j.nucengdes.2010.10.023
    [9] TANG P, LIU Z W, QIAO H W, et al. Stress and fatigue analysis of pressurizer surge line under thermal stratification[J]. Key Engineering Materials, 2019, 795: 268-275. doi: 10.4028/www.scientific.net/KEM.795.268
    [10] LIU J Q, ZHANG J G, SHI J D, et al. Research of PWR pressurizer insurge characteristics on three-dimensional transient modeling[J]. Science and Technology of Nuclear Installations, 2018, 2018: 8150879.
    [11] LIU T, YI S B, WANG X C. Thermal stratification effects on surge line fatigue life based on finite element analysis[J]. Advanced Materials Research, 2013, 668: 551-554. doi: 10.4028/www.scientific.net/AMR.668.551
    [12] MUHAMMAD N, WANG M J, TIAN W X, et al. LES study on the turbulent thermal stratification and thermo-mechanical fatigue analysis for NPP surge line[J]. International Journal of Thermal Sciences, 2022, 178: 107608. doi: 10.1016/j.ijthermalsci.2022.107608
    [13] 王东辉,傅孝龙,邝临源. 稳压器人孔密封分析研究[J]. 机械工程师,2017(10): 139-143. doi: 10.3969/j.issn.1002-2333.2017.10.053
    [14] 高永建. 稳压器人孔密封结构疲劳分析[J]. 压力容器,2020, 37(11): 27-32. doi: 10.3969/j.issn.1001-4837.2020.11.005
    [15] 陈聪,吴舸,傅孝龙,等. 抗热冲击稳压器双锥密封结构设计优化研究[J]. 核动力工程,2018, 39(4): 176-181. doi: 10.13832/j.jnpe.2018.04.0176
    [16] FELIPPA C A, PARK K C, FARHAT C. Partitioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3247-3270. doi: 10.1016/S0045-7825(00)00391-1
    [17] 余航,赵新文,傅晟威. 船用核动力装置止回阀的流固热耦合研究[J]. 核动力工程,2019, 40(4): 25-28. doi: 10.13832/j.jnpe.2019.04.0025
    [18] 余航,赵新文,傅晟威,等. 基于流固热耦合的燃料元件包壳结构完整性分析[J]. 核动力工程,2022, 43(4): 106-112. doi: 10.13832/j.jnpe.2022.04.0106
    [19] 陈玉清,魏柯,刘家磊. 船用压水堆小破口失水事故最佳估算的不确定性和敏感性分析[J]. 海军工程大学学报,2021, 33(1): 89-94. doi: 10.7495/j.issn.1009-3486.2021.01.016
    [20] 肖文宇,范正伟. 小破口失水事故瞬态水力载荷计算中破口尺寸的影响[J]. 管道技术与设备,2020(6): 21-23.
    [21] 杨江,田文喜,苏光辉,等. AP1000冷管段小破口失水事故分析[J]. 原子能科学技术,2011, 45(5): 541-547.
  • 加载中
图(23)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  38
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-10-24
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回