高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低压反渗透工艺处理模拟放射性含钴废水

张雯琇 张光辉

张雯琇, 张光辉. 超低压反渗透工艺处理模拟放射性含钴废水[J]. 核动力工程, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187
引用本文: 张雯琇, 张光辉. 超低压反渗透工艺处理模拟放射性含钴废水[J]. 核动力工程, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187
Zhang Wenxiu, Zhang Guanghui. Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process[J]. Nuclear Power Engineering, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187
Citation: Zhang Wenxiu, Zhang Guanghui. Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process[J]. Nuclear Power Engineering, 2023, 44(1): 187-191. doi: 10.13832/j.jnpe.2023.01.0187

超低压反渗透工艺处理模拟放射性含钴废水

doi: 10.13832/j.jnpe.2023.01.0187
基金项目: 国家水体污染控制与治理科技重大专项(2015ZX07406006)
详细信息
    作者简介:

    张雯琇(1996—),女,硕士研究生,现主要从事放射性水体污染治理的研究,E-mail: misszhangwx@126.com

    通讯作者:

    张光辉,E-mail: zgh@tju.edu.cn

  • 中图分类号: TL941;X591

Treatment of Simulated Radioactive Cobalt Containing Wastewater by Ultra-low Pressure Reverse Osmosis Process

  • 摘要: 核电厂运行、维护和退役产生的放射性废水对社会环境和生命健康安全有严重危害。采用中试装置(144 L/h)研究了超低压反渗透(ULPRO)工艺对模拟放射性废水中目标核素钴(Co)的去除效果,确定了操作压力、回收率、进水浓度、共存离子及天然有机污染物对其影响规律。结果表明,Co去除率与操作压力正相关、与回收率负相关,随进水浓度增大而后恒定在99.5%,10 mg/L为其变化的临界浓度;共存离子仅Ca2+会抑制Co的去除,其他离子的促进作用强弱排序为Na+>Mg2+,SO42−>Cl>NO3;有机物污染造成膜通量下降9.4%,但Co去除率增大至99.97%。实验验证了ULPRO工艺处理模拟放射性含Co废水运行效果稳定、去除率高,可为工业应用提供指导。

     

  • 图  1  RO工艺流程

    Figure  1.  The Process of RO

    图  2  操作压力对除Co效果的影响

    Figure  2.  Effect of Operating Pressure on Co Removal

    图  3  操作压力对水通量和Co通量的影响

    Figure  3.  Effect of Operating Pressure on Water Flux and Co Flux     

    图  4  回收率对除Co效果的影响

    Figure  4.  Effect of Recovery Rate on Co Removal

    图  5  进水浓度对除Co效果的影响

    Figure  5.  Effect of Influent Concentration on Co Removal

    图  6  共存阳离子和共存阴离子对除Co效果的影响

    Figure  6.  Effect of Coexisting Cations and Anions on Co Removal        

    图  7  有机物对除Co效果的影响

    Figure  7.  Effect of Organics on Co Removal

    图  8  自来水和天然湖水中各离子的去除效果比较

    Figure  8.  Comparison of the Removal Effects of Various Ions in Tap Water and Natural Lake Water

    表  1  模拟放射性废水水质参数

    Table  1.   Water Quality Parameters of Simulated Radioactive Wastewater

    参数 自来水 天然湖水
    pH 8.05 8.85
    电导率/(μS·cm−1) 276 1198
    浊度/NTU 0.11 0.30
    Na+浓度/(mg·L−1) 21.45 162.10
    K+浓度/(mg·L−1) 2.12 12.51
    Ca2+浓度/(mg·L−1) 20.48 108.35
    Mg2+浓度/(mg·L−1) 11.04 47.14
    Cl浓度/(mg·L−1) 12.47 141.80
    NO3浓度/(mg·L−1) 4.23 13.78
    SO42−浓度/(mg·L−1) 24.78 178.12
    NPOC/(mg·L−1) 1.40 16.6
      注:①使用0.45 μm微滤膜过滤之后的湖水浊度;②NPOC—有机物浓度。
    下载: 导出CSV

    表  2  阳离子水合半径

    Table  2.   Cation Hydration Radius

    离子种类 Co2+ Na+ Mg2+ Ca2+
    水合离子半径/nm 0.423 0.365 0.429 0.412
    下载: 导出CSV
  • [1] International Atomic Energy Agency. Operating experience with nuclear power stations in member states[Z]. Vienna: IAEA, 2020.
    [2] International Atomic Energy Agency. Nuclear power reactors in the world[Z]. Vienna: IAEA, 2020.
    [3] CHOO K H, KWON D J, LEE K W, et al. Selective removal of cobalt species using nanofiltration membranes[J]. Environmental Science & Technology, 2002, 36(6): 1330-1336.
    [4] STRATHMANN H. Membrane separation processes: current relevance and future opportunities[J]. AIChE Journal, 2001, 47(5): 1077-1087. doi: 10.1002/aic.690470514
    [5] KIM H J, KIM S J, HYEON S, et al. Application of desalination membranes to nuclide (Cs, Sr, and Co) separation[J]. ACS Omega, 2020, 5(32): 20261-20269. doi: 10.1021/acsomega.0c02106
    [6] SASAKI T, OKABE J, HENMI M, et al. Cesium (Cs) and strontium (Sr) removal as model materials in radioactive water by advanced reverse osmosis membrane[J]. Desalination and Water Treatment, 2013, 51(7-9): 1672-1677. doi: 10.1080/19443994.2012.704696
    [7] OZAKI H, LI H F. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane[J]. Water Research, 2002, 36(1): 123-130. doi: 10.1016/S0043-1354(01)00197-X
    [8] CHEN D, ZHAO X, LI F Z. Treatment of low level radioactive wastewater by means of NF process[J]. Nuclear Engineering and Design, 2014, 278: 249-254. doi: 10.1016/j.nucengdes.2014.08.001
    [9] MA B, OH S, SHIN W S, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1-3): 336-346. doi: 10.1016/j.desal.2011.03.072
    [10] LEE B S. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste[J]. Nuclear Engineering and Technology, 2015, 47(7): 859-866. doi: 10.1016/j.net.2015.08.001
    [11] 何利斌,徐文露,顾平,等. 单级超低压反渗透膜工艺处理模拟放射性锶废水[J]. 中国给水排水,2021, 37(9): 105-109. doi: 10.19853/j.zgjsps.1000-4602.2021.09.017
    [12] 李志超. 反渗透技术处理模拟含碘、铯、锶放射性废水的研究[D]. 天津: 天津大学, 2018: 39-54.
    [13] OZAKI H, SHARMA K, SAKTAYWIN W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters[J]. Desalination, 2002, 144(1-3): 287-294. doi: 10.1016/S0011-9164(02)00329-6
    [14] FIRDAOUS L, QUÉMÉNEUR F, SCHLUMPF J P, et al. Modification of the ionic composition of salt solutions by electrodialysis[J]. Desalination, 2004, 167: 397-402. doi: 10.1016/j.desal.2004.06.153
    [15] ZHANG L, WEI J Y, ZHAO X, et al. Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonate[J]. Chemical Engineering Journal, 2016, 302: 733-743. doi: 10.1016/j.cej.2016.05.040
    [16] DING S Y, YANG Y, HUANG H O, et al. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium[J]. Journal of Hazardous Materials, 2015, 294: 27-34. doi: 10.1016/j.jhazmat.2015.03.056
    [17] CHEN D, LI F Z, ZHAO X, et al. The influence of salts on the reverse osmosis performance treating simulated boron-containing low level radioactive wastewater[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(12): 3607-3612.
    [18] CHILDRESS A E, ELIMELECH M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 1996, 119(2): 253-268. doi: 10.1016/0376-7388(96)00127-5
    [19] SHIM Y, LEE H J, LEE S, et al. Effects of natural organic matter and ionic species on membrane surface charge[J]. Environmental Science & Technology, 2002, 36(17): 3864-3871.
    [20] LI Q L, ELIMELECH M. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms[J]. Environmental Science & Technology, 2004, 38(17): 4683-4693.
    [21] DING S Y, YANG Y, LI C, et al. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes[J]. Water Research, 2016, 95: 174-184. doi: 10.1016/j.watres.2016.03.028
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  59
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-22
  • 修回日期:  2022-10-31
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回