高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通用型中子输运程序VITAS应用研究

张滕飞 殷晗 孙启政 肖维

张滕飞, 殷晗, 孙启政, 肖维. 通用型中子输运程序VITAS应用研究[J]. 核动力工程, 2023, 44(2): 15-23. doi: 10.13832/j.jnpe.2023.02.0015
引用本文: 张滕飞, 殷晗, 孙启政, 肖维. 通用型中子输运程序VITAS应用研究[J]. 核动力工程, 2023, 44(2): 15-23. doi: 10.13832/j.jnpe.2023.02.0015
Zhang Tengfei, Yin Han, Sun Qizheng, Xiao Wei. Application Research on VITAS—a General-purpose Neutron Transport Code[J]. Nuclear Power Engineering, 2023, 44(2): 15-23. doi: 10.13832/j.jnpe.2023.02.0015
Citation: Zhang Tengfei, Yin Han, Sun Qizheng, Xiao Wei. Application Research on VITAS—a General-purpose Neutron Transport Code[J]. Nuclear Power Engineering, 2023, 44(2): 15-23. doi: 10.13832/j.jnpe.2023.02.0015

通用型中子输运程序VITAS应用研究

doi: 10.13832/j.jnpe.2023.02.0015
基金项目: 国家自然科学基金项目(11805122,12175138);中国科协青年人才托举工程(2019QNRC001);中核集团青年英才启明星项目(中核科发〔2020〕189号)
详细信息
    作者简介:

    张滕飞(1988—),男,副教授,主要从事核反应堆物理方面的研究,E-mail: zhangtengfei@sjtu.edu.cn

  • 中图分类号: TL429

Application Research on VITAS—a General-purpose Neutron Transport Code

  • 摘要: 为提高确定论全堆芯中子输运程序的适用性,开发了通用型中子输运程序VITAS。针对TAKEDA3基准题(矩形组件)、TAKEDA4基准题(六角形组件)、Dodds基准题(R-Z几何)和C5G7-TD5基准题(压水堆高保真计算)的验证结果表明,高阶的空间和角度基函数能够使结果稳定地向参考解渐进收敛,达到与多群蒙卡相当的计算精度水平。与参考解相比,TAKEDA3基准题有效增殖系数(keff)偏差低于60pcm(1pcm=10−5),控制棒价值偏差为−3pcm,中子通量密度分布均方根(RMS)偏差为1.03%;TAKEDA4基准题keff偏差低于20pcm,控制棒价值偏差为32pcm,中子通量密度分布RMS偏差为0.70%;Dodds基准题的功率最大偏差低于1%;C5G7-TD5基准题的功率偏差低于0.9%。本文研究表明VITAS有望成为一套精确求解中子输运问题的通用型计算工具。

     

  • 图  1  VITAS计算流程示意图

    Figure  1.  Calculation Flow Diagram of VITAS

    图  2  非结构化三棱柱节块的坐标映射示意图

    ξητxyz—坐标轴;p1p2p3p1′、p2′、p3′、knpk'n'p'—节块顶点

    Figure  2.  Coordinate Mapping Diagram of the Unstructured Triangular Prism Node

    图  3  SCM瞬态计算流程示意图

    Figure  3.  Schematic Diagram of SCM Transient Calculation Process     

    图  4  TAKEDA3基准题CR-In算例计算结果

    Figure  4.  Calculation Results of the CR-In Example for TAKEDA3 Benchmark Problem

    图  5  TAKEDA4基准题CRi算例计算结果

    Figure  5.  Calculation Results of CRi Example for TAKEDA4 Benchmark Problem

    图  6  Dodds基准题归一化功率的对比结果

    Figure  6.  Comparison of the Normalized Power for the Dodds Benchmark Problem

    图  7  C5G7-TD5基准题燃料栅元的3种有限元网格划分

    Figure  7.  Three Finite-Element Meshing Schemes for Fuel Lattice Cell of the C5G7-TD5 Benchmark Problem

    图  8  三维C5G7-TD5基准题对比结果

    Figure  8.  Comparative Results of Three-dimensional C5G7-TD5 Benchmark Problem

    表  1  计算基准题介绍

    Table  1.   Introduction to Calculation Benchmark Problems

    基准题名称问题类型计算所用节块类型
    TAKEDA3三维、矩形、稳态Cartesian
    TAKEDA4三维、六角形、稳态Hexagonal-z
    Dodds三维、R-Z、瞬态Triangular-z
    C5G7-TD5三维、燃料棒精细描述、瞬态Cartesian-FE
    下载: 导出CSV

    表  2  TAKEDA3基准题的keff偏差对比

    Table  2.   Comparison of keff Deviations for TAKEDA3 Benchmark Problem

    计算对象角度阶数keff偏差/pcm
    4/0阶5/1阶6/2阶7/2阶7/3阶8/4阶
    CR-InP12081281246247244243
    P3195212291928888
    P519319866666363
    P71925905858//
    CR-OutP11637216199199198197
    P315479985858383
    P515318065656363
    P71526745959//
    控制棒价值P1−551−82−62−63−61−61
    P3−507−30−12−13−10−10
    P5−501−24−5−5−4−4
    P7−500−21−3−3//
      “/”—计算超出了内存的限制,计算未启动,其余同
    下载: 导出CSV

    表  3  TAKEDA4基准题的keff偏差对比

    Table  3.   Comparison of keff Deviations for TAKEDA4 Benchmark Problem

    计算对象角度阶数keff偏差/pcm
    4/0阶5/1阶6/2阶7/3阶8/4阶
    CRiP16783821518544560
    P36336353525967
    P56278289−14−17/
    P76261277−29//
    CRhP16048706504516527
    P35658278737679
    P55615222106/
    P75603210−7//
    CRoP14841460376377381
    P34549163707069
    P545191201712/
    P745101092//
    控制棒价值P1−4268−669−353−385−402
    P3−3992−318−9−18−29
    P5−3950−2723232/
    P7−3938−26639//
    下载: 导出CSV

    表  4  二维C5G7问题的计算结果对比

    Table  4.   Comparison of Calculation Results for Two-dimensional C5G7 Problem

    角度阶数keff偏差/pcm棒功率偏差/%
    最大值RMS
    32FE/2阶96FE/4阶144FE/6阶32FE/2阶96FE/4阶144FE/6阶32FE/2阶96FE/4阶144FE/6阶
    P3_34775265512.031.791.830.870.760.79
    P5_32613133251.481.271.280.570.480.48
    P7_31992392521.311.081.090.480.370.37
    P9_31321601681.140.880.880.390.270.27
    P11_31021231321.070.800.800.360.240.23
    P13_37186931.000.710.700.320.210.20
    P15_35669750.970.670.650.310.190.19
    P17_34151560.930.620.600.290.180.18
    P19_33342460.920.600.600.290.180.18
    P21_32430330.890.610.640.280.180.17
    P23_31823260.880.620.660.270.170.17
    下载: 导出CSV
  • [1] 曹良志, 谢仲生, 李云召. 近代核反应堆物理分析[M]. 北京: 中国原子能出版社, 2017:4-7.
    [2] DOWNAR T, STAUDENMIER J. Theory Manual for the PARCS Neutronics core simulator: PARCS v2.6 U. S. NRC Core Neutronics Simulator, theory manual[Z]. Indiana, United States: Purdue University, 2004.
    [3] LAWRENCE R D. The DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry: ANL-83-1[R]. Argonne, Illinois, United States: Argonne National Lab, 1983.
    [4] VER PLANCK D M, COBB W R, BORLAND R S, et al. SIMULATE-E: a nodal core-analysis program for light-water reactors. Computer code user's manual: EPRI-NP-2792-CCM[R]. Framingham: Yankee Atomic Electric Co, 1983.
    [5] YANG W, WU H C, LI Y Z, et al. Development and verification of PWR-core fuel management calculation code system NECP-Bamboo: part Ⅱ Bamboo-Core[J]. Nuclear Engineering and Design, 2018, 337: 279-290. doi: 10.1016/j.nucengdes.2018.07.017
    [6] ZHANG T F, LI Z P. Variational nodal methods for neutron transport: 40 years in review[J]. Nuclear Engineering and Technology, 2022, 54(9): 3181-3204. doi: 10.1016/j.net.2022.04.012
    [7] ZHANG T F, WU H C, CAO L Z, et al. An improved variational nodal method for the solution of the three- dimensional steady-state multi-group neutron transport equation[J]. Nuclear Engineering and Design, 2018, 337: 419-427. doi: 10.1016/j.nucengdes.2018.07.009
    [8] ZHANG T F, XIONG J B, LIU L G, et al. Development and implementation of an integral variational nodal method to the hexagonal geometry nuclear reactors[J]. Annals of Nuclear Energy, 2019, 131: 210-220. doi: 10.1016/j.anucene.2019.03.031
    [9] ZHUANG K, SHANG W, LI T, et al. Variational nodal method for three-dimensional multigroup neutron diffusion equation based on arbitrary triangular prism[J]. Annals of Nuclear Energy, 2021, 158: 108285. doi: 10.1016/j.anucene.2021.108285
    [10] ZHANG T F, LEWIS E E, SMITH M A, et al. A variational nodal approach to 2D/1D pin resolved neutron transport for pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 186(2): 120-133. doi: 10.1080/00295639.2016.1273023
    [11] ZHANG T F, WANG Y P, LEWIS E E, et al. A three-dimensional variational nodal method for pin-resolved neutron transport analysis of pressurized water reactors[J]. Nuclear Science and Engineering, 2017, 188(2): 160-174. doi: 10.1080/00295639.2017.1350002
    [12] XIAO W, LI X Y, LI P J, et al. High-fidelity multi-physics coupling study on advanced heat pipe reactor[J]. Computer Physics Communications, 2022, 270: 108152. doi: 10.1016/j.cpc.2021.108152
    [13] GEUZAINE C, REMACLE J F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79(11): 1309-1331. doi: 10.1002/nme.2579
    [14] LOELIGER J, MCCULLOUGH M. Version control with Git: powerful tools and techniques for collaborative software development[M]. 2nd ed. 1005 Gravenstein Highway North, Sebastopol: O'Reilly Media, 2012:336.
    [15] BONNEY G E, KISSLING G E. Gram‐Schmidt orthogonalization of multinormal variates: applications in genetics[J]. Biometrical Journal, 1986, 28(4): 417-425. doi: 10.1002/bimj.4710280407
    [16] TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408
    [17] ROMANO P K, FORGET B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040
    [18] SEUBERT A, SUREDA A, BADER J, et al. The 3-D time-dependent transport code TORT-TD and its coupling with the 3D thermal-hydraulic code ATTICA3D for HTGR applications[J]. Nuclear Engineering and Design, 2012, 251: 173-180. doi: 10.1016/j.nucengdes.2011.09.067
    [19] GOLUOGLU S, BENTLEY C, DEMEGLIO R, et al. A deterministic method for transient, three-dimensional neutron transport: MOL. 19980504.0231[R]. Las Vegas: Yucca Mountain Project, 1998.
    [20] Argonne Code Center. Argonne Code Center: benchmark problem book: ANL-7416[R]. Argonne, Illinois, United States: American Nuclear Society, 1977.
    [21] HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
    [22] SHEN Q C, WANG Y R, JABAAY D, et al. Transient analysis of C5G7-TD benchmark with MPACT[J]. Annals of Nuclear Energy, 2019, 125: 107-120. doi: 10.1016/j.anucene.2018.10.049
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1491
  • HTML全文浏览量:  102
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 修回日期:  2023-02-14
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回