高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFD的铅铋快堆上腔室降阶热分层模型开发

杨涛 赵鹏程 赵亚楠 于涛

杨涛, 赵鹏程, 赵亚楠, 于涛. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程, 2023, 44(2): 48-53. doi: 10.13832/j.jnpe.2023.02.0048
引用本文: 杨涛, 赵鹏程, 赵亚楠, 于涛. 基于CFD的铅铋快堆上腔室降阶热分层模型开发[J]. 核动力工程, 2023, 44(2): 48-53. doi: 10.13832/j.jnpe.2023.02.0048
Yang Tao, Zhao Pengcheng, Zhao Yanan, Yu Tao. Development of Reduced-Order Thermal Stratification Model for Upper Plenum of Lead-Bismuth Fast Reactor Based on CFD[J]. Nuclear Power Engineering, 2023, 44(2): 48-53. doi: 10.13832/j.jnpe.2023.02.0048
Citation: Yang Tao, Zhao Pengcheng, Zhao Yanan, Yu Tao. Development of Reduced-Order Thermal Stratification Model for Upper Plenum of Lead-Bismuth Fast Reactor Based on CFD[J]. Nuclear Power Engineering, 2023, 44(2): 48-53. doi: 10.13832/j.jnpe.2023.02.0048

基于CFD的铅铋快堆上腔室降阶热分层模型开发

doi: 10.13832/j.jnpe.2023.02.0048
基金项目: 国家自然科学基金项目(11905101);湖南省研究生科研创新项目(CX20220992)
详细信息
    作者简介:

    杨 涛(1994—),男,博士研究生,现从事反应堆热工水力方向研究,E-mail: yangtao@stu.usc.edu.cn

    通讯作者:

    赵鹏程,E-mail: pengcheng.zhao@usc.edu.cn

  • 中图分类号: TL33

Development of Reduced-Order Thermal Stratification Model for Upper Plenum of Lead-Bismuth Fast Reactor Based on CFD

  • 摘要: 在铅铋快堆紧急停堆后,上腔室发生热分层现象对堆内结构完整性和自然循环余热排出能力产生重要影响,需要重点关注。为克服传统热分层分析方法的缺陷,基于计算流体动力学(CFD)程序Fluent得到高精度的全阶快照,通过特征正交基分解(POD)与Galerkin投影结合的方法构建降阶热分层模型。通过与CFD全阶热分层模型对热分层现象进行对比分析,研究结果表明所开发的降阶热分层模型能很好地模拟上腔室温度分布,能快速地开展铅铋快堆事故下的热分层界面特性研究。本文研究对热分层现象产生机理、有效遏制热分层现象产生提供了重要分析工具。

     

  • 图  1  结构模型和网格划分

    Figure  1.  Structural Model and Meshing

    图  2  网格独立性验证

    Figure  2.  Mesh Independence Verification

    图  3  1~45 s上腔室温度分布云图

    Figure  3.  Temperature Distribution Nephogram of Upper Plenum at 1~45 s

    图  4  不同时间点温度随轴向高度变化

    Figure  4.  Variation of Temperature with Axial Height at Different Time Points

    图  5  不同轴向高度上温度随时间变化

    Figure  5.  Variation of Temperature with Time at Different Axial Heights

    图  6  不同POD基函数个数降阶模型轴向温度误差

    Figure  6.  Axial Temperature Error of Reduced-Order Model with Different Numbers of POD Basis Functions

    图  7  不同时刻轴向温度分布重构

    Figure  7.  Axial Temperature Distribution Reconstruction at Different Times

    表  1  结构参数和实验数据

    Table  1.   Structural Parameters and Experimental Parameters

    实验参数实验设计数据ABTR数据比值
    腔室高度Hpool/m1.28.020.15
    出口高度Hout/m0.85.3470.15
    腔室直径Dpool/m0.31474.910.065
    中间构建直径DUIS/m0.14552.270.065
    入口直径Dinlet/m0.0127(×3)0.371(×3)0.009
    出口直径Doutlet/m0.016(×2)
    非保护性事故流量QULOF/(m3·s−1)0.0014290.37750.0038
    堆芯冷却剂流速Vcore/(m·s−1)3.7590.29612.7
    腔室热流体温度Thot/℃3005750.52
    腔室冷流体温度Tcold/℃2505250.48
    佩克莱数(Pe1616125200.13
    Re283497882370.04
    Ri161616161
    下载: 导出CSV

    表  2  铅铋流体热物性关系式

    Table  2.   Thermophysical Relationship of Lead-Bismuth Fluid

    物性实验关系式
    $ \rho \text{/}(\text{kg}·{\text{m}}^{-3}) $$ 11096 - 1.3236T $
    λ/[W·(m·K)−1]$ 4.94 \times {10^{ - 4}}{{\text{e}}^{754.1/T}} $
    动力黏度$\mu { {/({\rm{Pa}} \cdot {\rm{s}}} })$$ 3.61 + 1.517 \times {10^{ - 2}}T - 1.741 \times {10^{ - 6}}{T^2} $
    ${c_p}{\text{/} }\left[ { { {{\rm{J}} \cdot ({\rm{kg}} \cdot {\rm{K}}} }{)^{ - 1} } } \right]$$ 159 + 2.72 \times {10^{ - 2}}T + 7.12 \times {10^{ - 6}}{T^2} $
    下载: 导出CSV
  • [1] 薛秀丽,杨红义,冯预恒. 日本文殊快堆紧急停堆后堆芯出口腔室瞬态工况模拟研究[J]. 原子能科学技术,2017, 51(10): 1827-1833. doi: 10.7538/yzk.2017.51.10.1827
    [2] MORIYA S, TANAKA N, KATANO N, et al. Effects of Reynolds number and Richardson number on thermal stratification in hot plenum[J]. Nuclear Engineering and Design, 1987, 99: 441-451. doi: 10.1016/0029-5493(87)90140-3
    [3] SCHNEIDER J A, ANDERSON M H. Thermal stratification in a pool-type geometry: DOE-UWM-10268-3[R]. Madison: University of Wisconsin Madison, 2019.
    [4] BANDINI G, POLIDORI M, GERSCHENFELD A, et al. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors[J]. Nuclear Engineering and Design, 2015, 281: 22-38. doi: 10.1016/j.nucengdes.2014.11.003
    [5] YUE N N, MA Z Y, CAI R, et al. Thermal-hydraulic analysis of EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R[J]. Progress in Nuclear Energy, 2015, 85: 682-693. doi: 10.1016/j.pnucene.2015.09.002
    [6] LU C H, WU Z Y, MORGAN S, et al. An efficient 1-D thermal stratification model for pool-type sodium-cooled fast reactors[J]. Nuclear Technology, 2020, 206(10): 1465-1480. doi: 10.1080/00295450.2020.1719799
    [7] DONG Z Y, QIU H R, WANG M J, et al. Numerical simulation on the thermal stratification in the lead pool of lead-cooled fast reactor (LFR)[J]. Annals of Nuclear Energy, 2022, 174: 109176. doi: 10.1016/j.anucene.2022.109176
    [8] HE S P, WANG M J, ZHANG J, et al. Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead–bismuth[J]. Nuclear Engineering and Technology, 2021, 53(6): 1834-1845. doi: 10.1016/j.net.2020.12.025
    [9] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [10] SHIBAHARA M, TAKATA T, YAMAGUCHI A. Numerical study on thermal stratification phenomena in upper plenum of LMFBR “MONJU”[J]. Nuclear Engineering and Design, 2013, 258: 226-234. doi: 10.1016/j.nucengdes.2013.02.007
    [11] SCHNEIDER J, ANDERSON M, BAGLIETTO E, et al. Thermal stratification analysis for sodium fast reactors [C]//Proceedings of 2018 International Congress on Advances in Nuclear Power Plants. Charlotte, 2018.
    [12] ABE K, KONDOH T, NAGANO Y. A two-equation heat transfer model reflecting second-moment closures for wall and free turbulent flows[J]. International Journal of Heat and Fluid Flow, 1996, 17(3): 228-237. doi: 10.1016/0142-727X(96)00037-9
    [13] ABE K, KONDOH T, NAGANO Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations[J]. International Journal of Heat and Mass Transfer, 1994, 37(1): 139-151. doi: 10.1016/0017-9310(94)90168-6
    [14] FAZIO Concetta. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition-Introduction [M]. Paris: OECD, 2016: 17-27.
    [15] 丁鹏,陶文铨. 建立低阶模型的POD方法[J]. 工程热物理学报,2009, 30(6): 1019-1021.
    [16] ROWLEY C W, COLONIUS T, MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D:Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001
    [17] VOLKWEIN S. Model reduction using proper orthogonal decomposition [EB/OL]. (2011-12-07). [2022-05-01]. http://www.uni-graz.at/imawww/volkwein/POD.pdf.
    [18] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 271-290.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  118
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2023-01-19
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回