高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于开放栅格结构的空间堆三维热工水力特性研究

王志鹏 赵晶 石磊

王志鹏, 赵晶, 石磊. 基于开放栅格结构的空间堆三维热工水力特性研究[J]. 核动力工程, 2023, 44(2): 54-61. doi: 10.13832/j.jnpe.2023.02.0054
引用本文: 王志鹏, 赵晶, 石磊. 基于开放栅格结构的空间堆三维热工水力特性研究[J]. 核动力工程, 2023, 44(2): 54-61. doi: 10.13832/j.jnpe.2023.02.0054
Wang Zhipeng, Zhao Jing, Shi Lei. Study on Three-dimensional Thermal-hydraulic Characteristics of a Space Reactor based on Open Lattice Structure[J]. Nuclear Power Engineering, 2023, 44(2): 54-61. doi: 10.13832/j.jnpe.2023.02.0054
Citation: Wang Zhipeng, Zhao Jing, Shi Lei. Study on Three-dimensional Thermal-hydraulic Characteristics of a Space Reactor based on Open Lattice Structure[J]. Nuclear Power Engineering, 2023, 44(2): 54-61. doi: 10.13832/j.jnpe.2023.02.0054

基于开放栅格结构的空间堆三维热工水力特性研究

doi: 10.13832/j.jnpe.2023.02.0054
详细信息
    作者简介:

    王志鹏(1994—),男,助理研究员,现主要从事空间核动力方面研究,E-mail: 18311077918@163.com

  • 中图分类号: TL3

Study on Three-dimensional Thermal-hydraulic Characteristics of a Space Reactor based on Open Lattice Structure

  • 摘要: 高温气冷堆结合磁流体发电是一种高效的空间电源系统,可以满足空间任务对于大功率、高效率的需求,具有广阔的应用前景。本文参考美国普罗米修斯计划中的开放栅格方案,结合磁流体发电需满足的设计条件,提出了一种由三角形布置、217根燃料棒构成的堆芯方案。在通过试验数据确定流动模型后,对该空间堆进行了三维建模,并在考虑气隙结构、燃料棒功率分布及堆内辐射的基础上研究其热工水力特性,重点针对环境温度及外壁面发射率展开了热工参数敏感性分析。计算结果表明,该堆芯热工设计满足材料温度、压降限值等指标要求。冷却剂在燃料区横向流动不明显,不存在复杂涡结构,流动现象相对较为简单。稳态热工计算结果对环境温度的改变并不敏感,但发射率的改变影响相对较大。

     

  • 图  1  棒状燃料空间堆结构示意图

    Figure  1.  Schematic Diagram of Rod-shaped Fuel Space Reactor Structure

    图  2  试验段示意图及模拟件示意图

    Figure  2.  Schematic Diagram of Experimental Section and Schematic Diagram of Analog Parts

    图  3  其他工况条件下不同特征棒在不同高度处平均温度的测量值与模拟值

    Figure  3.  Measured and Analog Values of Average Temperature of Different Characteristic Rods at Different Heights under Other Working Conditions

    图  4  堆芯结构化计算网格

    Figure  4.  Structured Computational Mesh of the Core

    图  5  棒编号示意图

    Figure  5.  Schematic Diagram of Rod Number

    图  6  轴向功率因子随轴向无量纲高度变化关系式

    R2—拟合系数

    Figure  6.  Relationship between Axial Power Factor and Axial Dimensionless Height

    图  7  mesh a轴向俯视图细节

    Figure  7.  Axial Top View Details of mesh a

    图  8  特征面选取位置示意图

    Figure  8.  Schematic Diagram of Selected Location of Characteristic Surfaces

    图  9  冷却剂在三个特征面的速度矢量图

    Figure  9.  Velocity Vector Diagram of Coolant on Three Characteristic Surfaces

    图  10  冷却剂在三个特征截面的压强分布云图

    Figure  10.  Pressure Distribution Nephogram of Coolant on Three Characteristic Surfaces

    图  11  冷却剂在三个特征截面的温度分布云图

    Figure  11.  Temperature Distribution Nephogram of Coolant on Three Characteristic Surfaces

    表  1  棒状燃料空间堆基本参数表

    Table  1.   Basic Parameters of Rod-shaped Fuel Space Reactor

    参数名参数值参数名参数值
    燃料棒数目217铼包壳外半径/cm0.775
    堆芯对边距/cm26单栅格边距/cm1.75
    堆芯活性区高度/cm50燃料富集度/%75
    反应堆直径/cm44235U装载量/kg155
    反应堆高度/cm72.5金属铀装量/kg207
    轴向空腔高度/cm2反应堆总重量/kg523
    径向流道高度/cm1功率密度/(MW·m−3)34.2
    压力容器厚度/cm0.25轴向反射层开孔基准孔径/cm0.35
    轴向反射层厚度/cm8端塞直径/cm0.2
    UN芯块半径/cm0.688包壳内半径/cm0.69
    下载: 导出CSV

    表  2  不同流量及功率下的试验工况

    Table  2.   Experimental Conditions under Different Flow Rates and Powers

    试验编号期望流量/(kg·h−1)功率/W备注
    2-10048.6837×73基准工况,实际流量48.57 kg/h
    2-11058.4237×73120%高流量
    2-12048.6837×73/250%低功率
    2-13024.3437×73/250%低功率低流量
    2-14048.6837×73带功率分布
    下载: 导出CSV

    表  3  径向功率因子

    Table  3.   Radial Power Factor

    棒编号径向功率因子棒编号径向功率因子棒编号径向功率因子
    11.126101.106190.962
    21.117111.075200.933
    31.099121.036210.997
    41.063130.990220.967
    51.018140.942230.941
    60.966150.907241.019
    70.917160.958251.008
    80.874171.044
    90.928181.006
    下载: 导出CSV

    表  4  不同网格下的计算结果

    Table  4.   Calculation Results under Different Meshes

    网格编号网格数
    目/万
    反应堆压
    降/kPa
    压降相对
    偏差/%
    包壳最高
    温度/K
    温度相对
    偏差/%
    mesh 128423.683.5821350.19
    mesh 238623.713.4621370.09
    mesh 352324.480.3221390
    mesh 461324.562139
    下载: 导出CSV

    表  5  空间堆三维稳态热工水力计算结果

    Table  5.   Three-dimensional Steady-state Thermal-hydraulic Calculation Results of Space Reactor

    物理量计算值物理量计算值
    入口温度/K1100出口温度/K1734.5
    运行压力/MPa0.4反应堆压降/kPa23.75
    燃料最高温度/K2146.7压力容器最高温度/K1774.7
    包壳最高温度/K2103.0反射层最高温度/K1957.4
    气隙最高温度/K2118.3冷却剂空腔区最高温度/K2062.9
    冷却剂燃料区最高温度/K2101.0冷却剂进出口区最高温度/K1899.9
    冷却剂开孔区最高温度/K1985.8
    下载: 导出CSV

    表  6  不同环境温度及壁面发射率条件下的稳态热工计算结果

    Table  6.   Steady-state Thermal Calculation Results under Different Ambient Temperatures and Wall Emissivities

    环境温度/K外壁面发射率燃料最高温度/K包壳最高温度/K反应堆出口温度/K反应堆压降/kPa
    2000.52146.72103.01734.523.75
    3000.52146.82103.91734.723.76
    4000.52148.02104.31734.823.77
    2000.32169.02126.01752.324.00
    2000.72105.82060.01715.323.50
    下载: 导出CSV
  • [1] LITCHFORD R J, BITTEKER L J, JONES J E. Prospects for nuclear electric propulsion using closed-cycle magnetohydrodynamic energy conversion: NASA TP-2001-211274[R]. Washington: NASA, 2001.
    [2] HARADA N, KIEN L C, HISHIKAWA M. Basic studies on closed cycle MHD power generation system for space application[C]//35th AIAA Plasmadynamics and Lasers Conference. Portland: AIAA, 2006.
    [3] KOBAYASHI H, OKUNO Y. Feasibility study on frozen inert gas plasma MHD generator[J]. IEEE Transactions on Plasma Science, 2000, 28(4): 1296-1302. doi: 10.1109/27.893319
    [4] Litchford R J, Harada N. Multi-MW closed cycle MHD nuclear space power via nonequilibrium He/Xe working plasma[C]. Proceedings of Nuclear and Emerging Technologies for Space 2011, Albuquerque, 2011: 3349.
    [5] 王志鹏, 孙俊, 石磊. 采用磁流体发电的空间核反应堆系统效率分析[C]//第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室, 2019年学术年会论文集, 2019: 930-941.
    [6] TAYLOR R. Prometheus project final report[Z]. Washington: NASA, 2005.
    [7] WOLLMAN M J, ZIKA M J. Prometheus project reactor module final report, for naval reactors information: SPP-67110-0008[R]. Niskayuna: Knolls Atomic Power Laboratory, 2006.
    [8] AN W J, SONG J, XIE J C, et al. Core design of ultra-high temperature reactor for MHD power generation[J]. Atomic Energy Science and Technology, 2015, 49(12): 2212-2216.
    [9] ZHAO Z H, AN W J, XIE J C, et al. Core design of 1MWth space reactor for closed-loop magnetic fluid power generation system[J]. Science and Technology Innovation Herald, 2018, 15(7): 97-99.
    [10] MENG T, CHENG K, Zhao F L, et al. Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 135: 106986. doi: 10.1016/j.anucene.2019.106986
    [11] MENG T, ZHAO F L, CHENG K, et al. Numerical study of flow and heat transfer characteristic of space gas-cooled nuclear reactor core[J]. Atomic Energy Science and Technology, 2019, 53(7): 1264-1271.
    [12] WANG Z P, ZHAO J, YE Z S, et al. Numerical simulation and experimental study on gas flow in an open lattice structure for an advanced space nuclear power system[J]. Frontiers in Energy Research, 2022, 10: 939712. doi: 10.3389/fenrg.2022.939712
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  65
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 修回日期:  2022-06-30
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回