高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形窄通道内汽泡滑移与冷凝前期生长模型研究

张林 刘汉周 刘晓晶 陈勇 陈德奇

张林, 刘汉周, 刘晓晶, 陈勇, 陈德奇. 矩形窄通道内汽泡滑移与冷凝前期生长模型研究[J]. 核动力工程, 2023, 44(2): 69-76. doi: 10.13832/j.jnpe.2023.02.0069
引用本文: 张林, 刘汉周, 刘晓晶, 陈勇, 陈德奇. 矩形窄通道内汽泡滑移与冷凝前期生长模型研究[J]. 核动力工程, 2023, 44(2): 69-76. doi: 10.13832/j.jnpe.2023.02.0069
Zhang Lin, Liu Hanzhou, Liu Xiaojing, Chen Yong, Chen Deqi. Model Study on Bubble Slide and Early-Stage Condensation Growth in Rectangular Narrow Channel[J]. Nuclear Power Engineering, 2023, 44(2): 69-76. doi: 10.13832/j.jnpe.2023.02.0069
Citation: Zhang Lin, Liu Hanzhou, Liu Xiaojing, Chen Yong, Chen Deqi. Model Study on Bubble Slide and Early-Stage Condensation Growth in Rectangular Narrow Channel[J]. Nuclear Power Engineering, 2023, 44(2): 69-76. doi: 10.13832/j.jnpe.2023.02.0069

矩形窄通道内汽泡滑移与冷凝前期生长模型研究

doi: 10.13832/j.jnpe.2023.02.0069
基金项目: 国家自然科学基金(U2067210)
详细信息
    作者简介:

    张 林(1996—),男,博士研究生,从事核反应堆热工水力学研究,E-mail: zhang-lin@sjtu.edu.cn

  • 中图分类号: TL334

Model Study on Bubble Slide and Early-Stage Condensation Growth in Rectangular Narrow Channel

  • 摘要: 矩形窄流道内汽泡生长会直接改变相界面浓度,从而影响流道的传热传质性能。为获得适用于窄流道内不同类型的汽泡生长模型,基于通体可视的实验本体,开展壁面沸腾流动换热实验。基于传热能量方程,研究过冷沸腾中汽泡滑移与冷凝前期两种情况下汽泡生长模型。实验结果表明汽泡呈现两种形式的生长,即汽泡滑移生长以及冷凝前期生长。建立了两种情况下的汽泡生长模型,实验数据验证模型误差在20%以内。因此,本研究能为沸腾两相数值模拟提供更加精细化的汽泡生长模型,从而提高汽泡行为的预测精度。

     

  • 图  1  四面可视化沸腾流动实验回路示意图

    T—温度传感器;P—压力传感器;ΔP—压差传感器

    Figure  1.  Schematic Diagram of Four-sided Visualization Boiling Flow Experimental Loop

    图  2  四面可视化流动沸腾实验本体

    ITO—氧化铟锡

    Figure  2.  Four-sided Visualization Flow Boiling Test Section

    图  3  过冷沸腾汽泡滑移生长尺寸的时间演化

    Figure  3.  Time Evolution of Bubble Slide Growth Size in Subcooled Boiling

    图  4  过冷沸腾中汽泡传热模式

    qev,ml—微液层蒸发热流密度

    Figure  4.  Bubble Heat Transfer Mode in Subcooled Boiling

    图  5  不同$A_{{\text{sll}}}^{^{{\prime}}}$$A_{\text{c}}^{^{{\prime}}}$取值下滑移生长模型验证

    Figure  5.  Validation of Slide Growth Model under Different Values of $A_{{\text{sll}}}^{^{{\prime}}}$ and $A_{\text{c}}^{^{{\prime}}}$

    图  6  不同工况下滑移汽泡尺寸演化模型验证

    Figure  6.  Validation of Sliding Bubble Size Evolution Model under Different Working Conditions

    图  7  过冷沸腾汽泡冷凝尺寸的时间演化

    Figure  7.  Time Evolution of Bubble Size during Condensation in Subcooled Boiling

    图  8  不同$A_{{\text{sll}}}^{^{{\prime}}}$$A_{{\text{c}}}^{^{{\prime}}}$取值下冷凝前期生长模型验证

    Figure  8.  Validation of Early-Stage Condensation Growth Model under Different Values of $A_{{\text{sll}}}^{^{{\prime}}}$ and $A_{{\text{c}}}^{^{{\prime}}}$

    图  9  不同工况下冷凝前期汽泡生长模型验证

    Figure  9.  Validation of Early-Stage Bubble Condensation Growth Model under Different Working Conditions

    表  1  直接测量物理量误差值

    Table  1.   Error Value of Direct Measurement of Physical Quantity      

    测量参数相对误差
    流量±0.088%
    压力±0.067%
    压差±0.067%
    温度±0.5 K
    电源电压±0.02%
    电源电流±0.167%
    下载: 导出CSV
  • [1] VOSOUGH A, ASSARI M R, PEYGHAMBARZADEH S M, et al. Influence of fluid flow rate on the fouling resistance of calcium sulfate aqueous solution in subcooled flow boiling condition[J]. International Journal of Thermal Sciences, 2020, 154: 106397. doi: 10.1016/j.ijthermalsci.2020.106397
    [2] AZIZIFAR S, AMERI M, BEHROYAN I. An experimental study of subcooled flow boiling of water in the horizontal and vertical direction of a metal-foam tube[J]. Thermal Science and Engineering Progress, 2020, 20: 100748. doi: 10.1016/j.tsep.2020.100748
    [3] 秦浩,王明军,李林峰,等. 基于OpenFOAM的过冷流动沸腾数值模拟[J]. 原子能科学技术,2019, 53(11): 2157-2161.
    [4] LEVENSPIEL O. Collapse of steam bubbles in water[J]. Industrial & Engineering Chemistry, 1959, 51(6): 787-790.
    [5] HAN C Y, GRIFFITH P. The mechanism of heat transfer in nucleate pool boiling—part I: Bubble initiation, growth and departure[J]. International Journal of Heat and Mass Transfer, 1965, 8(6): 887-904. doi: 10.1016/0017-9310(65)90073-6
    [6] ZUBER N. The dynamics of vapor bubbles in nonuniform temperature fields[J]. International Journal of Heat and Mass Transfer, 1961, 2(1-2): 83-98. doi: 10.1016/0017-9310(61)90016-3
    [7] 胡健,高璞珍,许超,等. 窄矩形通道内过冷流动沸腾汽泡生长模型研究[J]. 原子能科学技术,2014, 48(12): 2213-2218.
    [8] 陈德奇,潘良明,袁德文,等. 竖直矩形窄流道内汽泡生长的实验研究[J]. 核动力工程,2008, 29(5): 52-55, 59.
    [9] JUNG S, KIM H. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 365-375. doi: 10.1016/j.ijheatmasstransfer.2014.02.014
    [10] DEMIRAY F, KIM J. Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3257-3268. doi: 10.1016/j.ijheatmasstransfer.2004.02.008
    [11] HOANG N H, CHU I C, EUH D J, et al. A mechanistic model for predicting the maximum diameter of vapor bubbles in a subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2016, 94: 174-179. doi: 10.1016/j.ijheatmasstransfer.2015.11.051
    [12] YOO J, ESTRADA-PEREZ C E, HASSAN Y A. Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[J]. Applied Thermal Engineering, 2018, 138: 657-667. doi: 10.1016/j.applthermaleng.2018.04.096
    [13] SERNAS V, HOOPER F C. The initial vapor bubble growth on a heated wall during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 1969, 12(12): 1627-1639. doi: 10.1016/0017-9310(69)90097-0
    [14] ZHANG L, LIU H Z, CHEN D Q, et al. Experimental investigation on the characteristics of maximum bubble size of subcooled flow boiling in narrow rectangular channel under different system pressure[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121426. doi: 10.1016/j.ijheatmasstransfer.2021.121426
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  33
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-06-20
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回