高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆管道小破口蒸汽临界流泄漏实验研究

朱梦馨 殷松涛 王海军 王宁宁

朱梦馨, 殷松涛, 王海军, 王宁宁. 压水堆管道小破口蒸汽临界流泄漏实验研究[J]. 核动力工程, 2023, 44(2): 84-90. doi: 10.13832/j.jnpe.2023.02.0084
引用本文: 朱梦馨, 殷松涛, 王海军, 王宁宁. 压水堆管道小破口蒸汽临界流泄漏实验研究[J]. 核动力工程, 2023, 44(2): 84-90. doi: 10.13832/j.jnpe.2023.02.0084
Zhu Mengxin, Yin Songtao, Wang Haijun, Wang Ningning. Experimental Study on Steam Critical Flow Leakage from a Small Break in Pipeline of Pressurized Water Reactor[J]. Nuclear Power Engineering, 2023, 44(2): 84-90. doi: 10.13832/j.jnpe.2023.02.0084
Citation: Zhu Mengxin, Yin Songtao, Wang Haijun, Wang Ningning. Experimental Study on Steam Critical Flow Leakage from a Small Break in Pipeline of Pressurized Water Reactor[J]. Nuclear Power Engineering, 2023, 44(2): 84-90. doi: 10.13832/j.jnpe.2023.02.0084

压水堆管道小破口蒸汽临界流泄漏实验研究

doi: 10.13832/j.jnpe.2023.02.0084
详细信息
    作者简介:

    朱梦馨(1998—),女,硕士研究生,现主要从事热工水力研究,Email: zhumengxin@stu.xjtu.edu.cn

    通讯作者:

    王海军,E-mail: whj@mail.xjtu.edu.cn

  • 中图分类号: TL334

Experimental Study on Steam Critical Flow Leakage from a Small Break in Pipeline of Pressurized Water Reactor

  • 摘要: 为探究压水堆核电厂小破口失水事故中管道小破口蒸汽临界流泄漏特性,开展了管道小破口泄漏实验,以探索饱和/过热蒸汽临界流泄漏特性。基于压力管道疲劳贯穿裂纹(微通道),开展了流体压力3~12 MPa、流体温度240℃~320℃范围内的蒸汽临界流泄漏实验。实验结果表明,蒸汽临界质量流速与初始流体压力呈正相关关系,与初始流体过热度呈负相关关系。与过冷水临界流泄漏相比,蒸汽临界质量流速受入口压力损失、摩擦效应与加速效应的影响相对较弱。利用一维等熵模型预测了蒸汽临界质量流速,预测值与实验值平均相对偏差为14.17%,表明一维等熵模型具有良好的蒸汽临界质量流速预测精度。

     

  • 图  1  实验装置图

    Figure  1.  Experimental Apparatus Diagram

    图  2  实验段示意图

    Figure  2.  Schematic Diagram of Experimental Section

    图  3  实验件示意图

    Figure  3.  Schematic Diagram of Test Piece

    图  4  压力对临界质量流量的影响

    Figure  4.  Influence of Pressure on Critical Mass Flow

    图  5  压力对临界质量流速的影响

    Figure  5.  Influence of Pressure on Critical Mass Flow Rate

    图  6  过热度对临界质量流速的影响

    Figure  6.  Influence of Superheat on Critical Mass Flow Rate

    图  7  压力对干度的影响

    Figure  7.  Influence of Pressure on Mass Quality

    图  8  模型预测值与实验值比较

    Figure  8.  Comparison of the Predicted Value of the Model and the Experimental Value

    表  1  实验件编号及尺寸

    Table  1.   Numbers and Dimensions of Test Pieces

    参数实验件尺寸
    编号1编号2编号3
    管道壁厚/mm101010
    裂纹深度/mm7.27.27.2
    外壁面裂纹长度/mm17.2513.9010.37
    内壁面裂纹长度/mm202020
    内壁面COD/mm0.120.160.10
    外壁面COD/mm0.1200.1100.061
    出口面积/mm22.071.530.63
    下载: 导出CSV

    表  2  关键参数不确定度

    Table  2.   Uncertainty of Key Parameters

    参数不确定度/%
    温度0.24~0.25
    压力0.74
    流量0.92
    下载: 导出CSV
  • [1] ZHANG J, CHEN R H, WANG M J, et al. A code development for leak before break (LBB) leakage from supercritical to subcritical conditions[J]. Progress in Nuclear Energy, 2018, 103: 217-228. doi: 10.1016/j.pnucene.2017.11.019
    [2] 王俊峰,汪杨乐,周源,等. 超临界二氧化碳细管喷放临界流特性研究[J]. 核动力工程,2021, 42(2): 35-38.
    [3] FAN X, WANG Y L, ZHOU Y, et al. Experimental study of supercritical CO2 leakage behavior from pressurized vessels[J]. Energy, 2018, 150: 342-350. doi: 10.1016/j.energy.2018.02.147
    [4] 金远,蒋孝蔚,邓坚,等. 小破口失水事故非能动系统瞬态特性研究[J]. 核动力工程,2020, 41(2): 189-192.
    [5] 殷松涛,王宁宁,王海军,等. 压水堆核电厂管道泄漏特性数值模拟研究[J]. 核动力工程,2021, 42(3): 32-36. doi: 10.13832/j.jnpe.2021.03.0032
    [6] GHOSH S, MUKHOPADHYAY D, SAHA S K. An experimental analysis of subcooled leakage flow through slits from high pressure high temperature pipelines[J]. International Journal of Pressure Vessels and Piping, 2011, 88(8-9): 281-289. doi: 10.1016/j.ijpvp.2011.05.008
    [7] REVANKAR S T, WOLF B, RIZNIC J R. Flashing flow of subcooled liquid through small cracks[J]. Procedia Engineering, 2013, 56: 454-461. doi: 10.1016/j.proeng.2013.03.146
    [8] ZHANG J, YU H, WANG M J, et al. Experimental study on the flow and thermal characteristics of two-phase leakage through micro crack[J]. Applied Thermal Engineering, 2019, 156: 145-155. doi: 10.1016/j.applthermaleng.2019.04.055
    [9] YANG Z D, BI Q C, ZHU G, et al. Leak rates of high pressure steam–water across simulation crack[J]. Experimental Thermal and Fluid Science, 2014, 59: 118-126. doi: 10.1016/j.expthermflusci.2014.07.009
    [10] MOFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. doi: 10.1016/0894-1777(88)90043-X
    [11] ABDOLLAHIAN D, CHEXAL B. Calculation of leak rates through cracks in pipes and tubes: EPRI-NP-3395[R]. Campbell: Levy (S.), Inc., 1983.
    [12] YIN S T, WENG Y, SONG Z C, et al. Mass transfer characteristics of pipeline leak-before-break in a nuclear power station[J]. Applied Thermal Engineering, 2018, 142: 194-202. doi: 10.1016/j.applthermaleng.2018.06.077
    [13] YIN S T, WANG N N, HUANG X, et al. Characteristic of vapor leakage behavior from a pressurized pipeline system: experiment and model study[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120-335. doi: 10.1016/j.ijheatmasstransfer.2020.120335
    [14] YIN S T, ZHU M X, LIU Q H, et al. Release behaviour of a high-pressure vapor vessel with condensation: test and modeling study[J]. Applied Thermal Engineering, 2022, 200: 117-647. doi: 10.1016/j.applthermaleng.2021.117647
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  28
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-21
  • 修回日期:  2022-06-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回