高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr涂层锆合金包壳模拟LOCA试验研究

王占伟 严俊 彭振驯 任啟森 廖业宏 李思功 赵亚欢

王占伟, 严俊, 彭振驯, 任啟森, 廖业宏, 李思功, 赵亚欢. Cr涂层锆合金包壳模拟LOCA试验研究[J]. 核动力工程, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122
引用本文: 王占伟, 严俊, 彭振驯, 任啟森, 廖业宏, 李思功, 赵亚欢. Cr涂层锆合金包壳模拟LOCA试验研究[J]. 核动力工程, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122
Wang Zhanwei, Yan Jun, Peng Zhenxun, Ren Qisen, Liao Yehong, Li Sigong, Zhao Yahuan. Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions[J]. Nuclear Power Engineering, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122
Citation: Wang Zhanwei, Yan Jun, Peng Zhenxun, Ren Qisen, Liao Yehong, Li Sigong, Zhao Yahuan. Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions[J]. Nuclear Power Engineering, 2023, 44(2): 122-128. doi: 10.13832/j.jnpe.2023.02.0122

Cr涂层锆合金包壳模拟LOCA试验研究

doi: 10.13832/j.jnpe.2023.02.0122
详细信息
    作者简介:

    王占伟(1987—),男,硕士研究生,现主要从事核燃料性能分析及燃料材料试验研究,E-mail: zhanwei_wang@163.com

  • 中图分类号: TL334

Experimental Study of Cr-coated Zirconium Alloy Cladding under Simulated LOCA Conditions

  • 摘要: 2011年日本福岛核事故暴露传统锆合金燃料包壳在失水事故(LOCA)工况下的安全性问题。为了探究新型Cr涂层锆合金包壳在LOCA工况下的性能,本研究针对物理气相沉积(PVD)工艺涂覆的12~15 μm厚度Cr涂层Zr-1Nb合金包壳管,开展模拟 LOCA工况下的高温蒸汽氧化-淬火试验,氧化温度为1200℃和1300℃,单面氧化时间为10 min和20 min,淬火温度约800℃,之后对淬火后试样进行环压测试。结果发现,在研究条件下,Cr涂层未出现剥落,涂层完整;Cr涂层锆合金包壳外表面形成较为致密Cr2O3层,抑制O原子扩散至锆合金基体,阻止锆合金基体被氧化为ZrO2层和α-Zr(O)层,环压测试发现淬火后包壳保持良好塑性。研究表明,在本测试工况下Cr涂层锆合金包壳相比传统锆合金包壳具有更强的抗LOCA事故能力。

     

  • 图  1  试验样品

    Figure  1.  Test Sample

    图  2  不同工况下高温蒸汽氧化-淬火后宏观试样

    Figure  2.  Macrograph of Test Sample after High Temperature Steam Oxidation and Quenching under Different Conditions

    图  3  未氧化和氧化后Cr涂层锆合金包壳表面XRD图谱

    Figure  3.  XRD Spectrum of Unoxidized and Oxidized Cr-coated Zirconium-alloy Cladding Surfaces

    图  4  氧化样品表面形貌

    Figure  4.  Surface Morphology of Oxidized Sample

    图  5  氧化样品横截面形貌

    Figure  5.  Cross-section Morphology of Oxidized Sample

    图  6  氧化样品Cr元素EDS面分析

    Figure  6.  EDS Surface Analysis of Cr Element of Oxidized Sample

    图  7  氧化样品横截面EDS线分析

    Figure  7.  EDS Line Analysis of Oxidized Sample Cross-section

    图  8  淬火后样品载荷-位移曲线

    Figure  8.  Load-displacement Curves of Post-quench Sample

    图  9  环向压缩样品断口形貌

    Figure  9.  Fracture Morphology of Ring Compression Sample

    表  1  氧化样品表面EDS点分析

    Table  1.   EDS Point Analysis of Oxidized Sample Surface

    取样位置元素含量/%
    CrO
    P138.0561.95
    P238.9961.01
    P339.1160.89
      注:①原子百分比
    下载: 导出CSV

    表  2  氧化样品横截面EDS点分析

    Table  2.   EDS Point Analysis of Oxidized Sample Cross-section      

    取样位置元素含量/%
    CrOZrFeNb
    144.4155.59
    297.041.531.42
    369.3728.750.940.94
    41.677.8888.220.192.04
    510.887.9678.660.531.98
    61.139.3687.510.131.87
    77.598.3882.130.401.50
    82.407.9487.760.121.78
    96.078.2483.340.431.91
      注:①原子百分比
    下载: 导出CSV
  • [1] YEOM H, LOCKHART C, MARIANI R, et al. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings[J]. Journal of Nuclear Materials, 2018, 499: 256-267. doi: 10.1016/j.jnucmat.2017.11.045
    [2] PINT B A, TERRANI K A, YAMAMOTO Y, et al. Material selection for accident tolerant fuel cladding[J]. Metallurgical and Materials Transactions E, 2015, 2(3): 190-196. doi: 10.1007/s40553-015-0056-7
    [3] ZHANG B, GAO P C, XU T, et al. Performance evaluation of accident tolerant fuel under station blackout accident in PWR nuclear power plant by improved ISAA code[J]. Nuclear Engineering and Technology, 2022, 54(7): 2475-2490. doi: 10.1016/j.net.2022.01.024
    [4] YAMAMOTO Y, PINT B A, TERRANI K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. Journal of Nuclear Materials, 2015, 467: 703-716. doi: 10.1016/j.jnucmat.2015.10.019
    [5] KIM H G, KIM I H, JUNG Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating[J]. Journal of Nuclear Materials, 2015, 465: 531-539. doi: 10.1016/j.jnucmat.2015.06.030
    [6] MAIER B R, GARCIA-DIAZ B L, HAUCH B, et al. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding[J]. Journal of Nuclear Materials, 2015, 466: 712-717. doi: 10.1016/j.jnucmat.2015.06.028
    [7] ALAT E, MOTTA A T, COMSTOCK R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding[J]. Journal of Nuclear Materials, 2016, 478: 236-244. doi: 10.1016/j.jnucmat.2016.05.021
    [8] SHAPOVALOV K, JACOBSEN G M, ALVA L, et al. Strength of SiCf-SiCm composite tube under uniaxial and multiaxial loading[J]. Journal of Nuclear Materials, 2018, 500: 280-294. doi: 10.1016/j.jnucmat.2018.01.001
    [9] MAIER B, YEOM H, JOHNSON G, et al. Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding[J]. Journal of Nuclear Materials, 2019, 519: 247-254. doi: 10.1016/j.jnucmat.2019.03.039
    [10] BRACHET J C, IDARRAGA-TRUJILLO I, FLEM M L, et al. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors[J]. Journal of Nuclear Materials, 2019, 517: 268-285. doi: 10.1016/j.jnucmat.2019.02.018
    [11] BISCHOFF J, DELAFOY C, VAUGLIN C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding[J]. Nuclear Engineering and Technology, 2018, 50(2): 223-228. doi: 10.1016/j.net.2017.12.004
    [12] PARK J H, KIM H G, PARK J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings[J]. Surface and Coatings Technology, 2015, 280: 256-259. doi: 10.1016/j.surfcoat.2015.09.022
    [13] BRACHET J C, LE SAUX M, BISCHOFF J, et al. Evaluation of Equivalent Cladding Reacted parameters of Cr-coated claddings oxidized in steam at 1200 C in relation with oxygen diffusion/partitioning and post-quench ductility[J]. Journal of Nuclear Materials, 2020, 533: 152106. doi: 10.1016/j.jnucmat.2020.152106
    [14] YEOM H, MAIER B, JOHNSON G, et al. High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments[J]. Journal of Nuclear Materials, 2019, 526: 151737. doi: 10.1016/j.jnucmat.2019.151737
    [15] PARK D J, KIM H G, JUNG Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions[J]. Journal of Nuclear Materials, 2016, 482: 75-82. doi: 10.1016/j.jnucmat.2016.10.021
    [16] KIM H G, KIM I H, JUNG Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs[J]. Journal of Nuclear Materials, 2018, 510: 93-99. doi: 10.1016/j.jnucmat.2018.07.061
    [17] CHUNG H M. Fuel behavior under loss-of-coolant accident situations[J]. Nuclear Engineering and Technology, 2005, 37(4): 327-362.
    [18] RIBIS J, WU A, BRACHET J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material[J]. Journal of Materials Science, 2018, 53(14): 9879-9895. doi: 10.1007/s10853-018-2333-1
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  84
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-12-04
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回