高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

残余应力作用下的不锈钢管道环向穿壁裂纹闭合效应研究

刘震顺 张晟 毛庆 郑向远

刘震顺, 张晟, 毛庆, 郑向远. 残余应力作用下的不锈钢管道环向穿壁裂纹闭合效应研究[J]. 核动力工程, 2023, 44(2): 152-158. doi: 10.13832/j.jnpe.2023.02.0152
引用本文: 刘震顺, 张晟, 毛庆, 郑向远. 残余应力作用下的不锈钢管道环向穿壁裂纹闭合效应研究[J]. 核动力工程, 2023, 44(2): 152-158. doi: 10.13832/j.jnpe.2023.02.0152
Liu Zhenshun, Zhang Sheng, Mao Qing, Zheng Xiangyuan. Research on the Closure Effect of Circumferential Through-Wall Cracks in Stainless Steel Piping under Residual Stress[J]. Nuclear Power Engineering, 2023, 44(2): 152-158. doi: 10.13832/j.jnpe.2023.02.0152
Citation: Liu Zhenshun, Zhang Sheng, Mao Qing, Zheng Xiangyuan. Research on the Closure Effect of Circumferential Through-Wall Cracks in Stainless Steel Piping under Residual Stress[J]. Nuclear Power Engineering, 2023, 44(2): 152-158. doi: 10.13832/j.jnpe.2023.02.0152

残余应力作用下的不锈钢管道环向穿壁裂纹闭合效应研究

doi: 10.13832/j.jnpe.2023.02.0152
基金项目: 核电安全监控技术与装备国家重点实验室开放基金(007-EC-B-2020)
详细信息
    作者简介:

    刘震顺(1983—),男,博士研究生,正高级工程师,现从事反应堆结构力学分析工作,E-mail: lzs19@mails.tsinghua.edu.cn

    张 晟(1998—),男,博士研究生,现从事力学分析研究,E-mail: s-zhang20@mails.tsinghua.edu.cn

    通讯作者:

    郑向远(1975—),E-mail: zheng.xiangyuan@sz.tsinghua.edu.cn

  • 中图分类号: TL331

Research on the Closure Effect of Circumferential Through-Wall Cracks in Stainless Steel Piping under Residual Stress

  • 摘要: 管道环向穿壁裂纹在不同载荷水平作用下的张开位移预测值是破前漏技术应用的关键核心参数。针对具有代表性几何尺寸的奥氏体不锈钢管道,采用数值分析和对比验证相结合的方法,基于工程中实际测得的材料性能曲线研究了典型焊接残余应力作用下穿壁裂纹临界闭合应力的变化规律。分析结果表明,目前的通用电气有限公司/美国电力研究院(GE/RPRI)方法和美国核管会技术报告NUREG/CR-6837修正方法均低估了由美国机械工程师协会(ASME)规范工作小组推荐的简化残余应力场所导致的管道环向穿壁裂纹闭合效应。此外,分析了环向穿壁裂纹闭合状态下管道的失效模式,在此基础上进一步讨论了裂纹闭合效应对破前漏技术应用的影响,为后续工程实践提供了可借鉴的技术观点。

     

  • 图  1  分析模型示例

    Ri—管道内半径;Ro—管道外半径;L—管道长度的一半;δ—裂纹COD      

    Figure  1.  Example of the Analysis Model

    图  2  模型约束条件

    U1U2U3xyz三个方向的平动自由度(U1在背面无法示出);UR1UR2UR3—绕xyz轴的转动自由度

    Figure  2.  Model Constraints

    图  3  裂纹尖端网格划分

    Figure  3.  Crack Tip Meshing

    图  4  薄壁管道数值分析结果对比验证

    计算参数为:Ro=51 mm、t=8.9 mm、θ=0.2π、M=8.83 kN·m

    Figure  4.  Comparison Validation of Numerical Analysis Results of Thin-Walled Pipe

    图  5  厚壁管道数值分析结果对比验证

    计算参数为:Ro=201 mm、t=26.41 mm、θ=0.12π、M=522.07 kN·m      

    Figure  5.  Comparison Validation of Numerical Analysis Results of Thick-Walled Pipe

    图  6  残余应力导致裂纹闭合现象示意图

    Figure  6.  Schematic Diagram of Crack Closure Induced by Residual Stress

    图  7  残余应力导致外壁点位移值

    Figure  7.  Displacement Value of Outer Wall Point Caused by Residual Stress

    图  8  不同θt下临界闭合应力

    Figure  8.  Critical Closure Stress under Different θ and t

    图  9  不同半裂纹角度下临界闭合应力

    Figure  9.  Critical Closure Stress under Different Semi-Crack Angles     

    图  10  不同壁厚下的临界闭合应力

    Figure  10.  Critical Closure Stresses under Different Wall Thicknesses

    表  1  材料性能

    Table  1.   Material Properties

    参数数值
    拉伸应力强度Su/MPa585
    屈服应力强度Sy/MPa240
    弹性模量/MPa187777
    R-O方程系数α7.664
    R-O方程指数n3.882
    下载: 导出CSV

    表  2  有限元分析模型输入参数

    Table  2.   Input Parameters of Finite Element Analysis Model

    参数取值
    t/mm7.5、15、22.5、30、40
    θ0.0625π、0.125π、0.25π、0.45π
    R/t5、10、20
    残余应力有/无
    下载: 导出CSV

    表  3  裂纹闭合应力与可监测应力对比

    Table  3.   Comparison of Crack Closure Stress and Monitored Stress

    t/mmθ闭合应力/MPa可监测应力/MPa
    150.0625π104.6196.53
    150.45π9.6735.16
    400.0625π32.52174.09
    400.45π27.2529.29
    下载: 导出CSV
  • [1] WICHMAN K, LEE S. Development of USNRC standard review plan 3.6. 3 for leak-before-break applications to nuclear power plants[J]. International Journal of Pressure Vessels and Piping, 1990, 43(1-3): 57-65. doi: 10.1016/0308-0161(90)90092-V
    [2] USNRC. Evaluation of potentials for pipe breaks: NUREG-1061[R]. Washington: NRC, 1984.
    [3] NAMBURU S D, CHEBOLU L R, SUBRAMANIAN A K, et al. Influence of weld residual stresses on ductile crack behavior in AISI type 316LN stainless steel weld joint[C]//ASME 2018 Pressure Vessels and Piping Conference. Prague: ASME, 2018.
    [4] COULES H, SMITH D. Upper bound estimates of the contribution of an unknown residual stress field to stress intensity factor[C]//Proceedings of the ASME 2015 Pressure Vessels and Piping Conference. Boston, Massachusetts: ASME, 2015.
    [5] WEBSTER G A, DAVIES C M, NIKBIN K M. Prediction of creep crack growth in the presence of residual stress[J]. Materials at High Temperatures, 2011, 28(3): 165-171. doi: 10.3184/096034011X13119610349738
    [6] GHADIALI N, WILKOWSKI G, RAHMAN S, et al. Deterministic and probabilistic evaluations for uncertainty in pipe fracture parameters in leak-before-break and in-service flaw evaluations: NUREG/CR-6443[R]. Washington, DC, USA: Nuclear Regulatory Commission, 1996.
    [7] NORRIS D. PICEP (pipe crack evaluation computer program): NP-3596-SR[R]. Palo Alto, CA: EPRI, 1987.
    [8] RAHMAN S, BRUST F W, GHADIALI N, et al. Crack-opening-area analyses for circumferential through-wall cracks in pipes - Part I: analytical models[J]. International Journal of Pressure Vessels and Piping, 1998, 75(5): 357-373. doi: 10.1016/S0308-0161(97)00081-1
    [9] MÅNGÅRD D, HANNES D. Estimates of J-integral and COD for circumferential through wall cracks under global bending including the effect of pipe end restraint: 2020-16[R]. Stockholm: Swedish Radiation Safety Authority, 2020.
    [10] RAHMAN S, BRUST F, GHADIALI N, et al. Recent evaluations of crack-opening-area in circumferentially cracked pipes: NUREG/CP-0155[R]. Washington, DC: US Nuclear Regulatory Commission, 1997.
    [11] MIRZAEE-SISAN A, WU G. Residual stress in pipeline girth welds-A review of recent data and modelling[J]. International Journal of Pressure Vessels and Piping, 2019, 169: 142-152. doi: 10.1016/j.ijpvp.2018.12.004
    [12] SCOTT P, OLSON R, BOCKBRADER J, et al. The Battelle integrity of nuclear piping (BINP) program final report: appendices: NUREG/CR-6837[R]. Washington, DC, USA: Nuclear Regulatory Commission, 2005.
    [13] RAHMAN S, GHADIALI N, WILKOWSKI G M, et al. Crack-opening-area analyses for circumferential through-wall cracks in pipes—Part III: off-center cracks, restraint of bending, thickness transition and weld residual stresses[J]. International Journal of Pressure Vessels and Piping, 1998, 75(5): 397-415. doi: 10.1016/S0308-0161(97)00083-5
    [14] MACUROVA K, TICHY R, STRNADEL B. Modification of leak before break criterion with focus on the residual stress[C]//Proceedings of the ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. Bellevue, Washington: ASME, 2010.
    [15] SHIM D J, KURTH E, BRUST F, et al. Crack-opening displacement and leak-rate calculations for full structural weld overlays[C]//Proceedings of the ASME 2009 Pressure Vessels and Piping Conference. Prague: ASME, 2009.
    [16] HUANG Y F, WANG X, DUAN X J. Evaluation of crack opening displacement of through-wall circumferential-cracked pipe using direct weight function method[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102595. doi: 10.1016/j.tafmec.2020.102595
    [17] SCOTT P, OLSON R J, WILKOWSKI G M. Development of technical basis for leak-before-break evaluation procedures[M]. Columbus: NRC, 2002: 21-36.
    [18] KICIAK A, GLINKA G, BURNS D J. Calculation of stress intensity factors and crack opening displacements for cracks subjected to complex stress fields[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2003, 125(3): 260-266. doi: 10.1115/1.1593080
    [19] ANDERSON T L, GLINKA G. A closed-form method for integrating weight functions for part-through cracks subject to Mode I loading[J]. Engineering Fracture Mechanics, 2006, 73(15): 2153-2165. doi: 10.1016/j.engfracmech.2006.04.027
    [20] FAN J L, DONG D K, CHEN L, et al. Weight function method for computations of crack face displacements and stress intensity factors of center cracks[J]. Frattura ed Integrità Strutturale, 2015, 9(33): 463-470.
    [21] LEWIS T, WANG X. The T-stress solutions for through-wall circumferential cracks in cylinders subjected to general loading conditions[J]. Engineering Fracture Mechanics, 2008, 75(10): 3206-3225. doi: 10.1016/j.engfracmech.2007.12.001
    [22] EPRI. Evaluation of flaws in austenitic steel piping, Technical basis document for ASME IWB-3640 analysis procedure, prepared by Section XI Task Group for Piping Flaw Evaluation: NP-4690-SR[R]. Palo Alto: Electric Power Research Institute, 1986.
    [23] HIBBITT K, AND SORENSEN. ABAQUS users guide and theoretical manual [M]. Pawtucket: RI, 2010: 10-60.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  47
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-08-15
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回