高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十八胺在碳钢表面吸附和成膜的分子动力学研究

李超 黄军林 王露 周克毅

李超, 黄军林, 王露, 周克毅. 十八胺在碳钢表面吸附和成膜的分子动力学研究[J]. 核动力工程, 2023, 44(2): 203-209. doi: 10.13832/j.jnpe.2023.02.0203
引用本文: 李超, 黄军林, 王露, 周克毅. 十八胺在碳钢表面吸附和成膜的分子动力学研究[J]. 核动力工程, 2023, 44(2): 203-209. doi: 10.13832/j.jnpe.2023.02.0203
Li Chao, Huang Junlin, Wang Lu, Zhou Keyi. Study on Molecular Dynamics of the Adsorption and Film Formation of Octadecylamine on Carbon Steel Surface[J]. Nuclear Power Engineering, 2023, 44(2): 203-209. doi: 10.13832/j.jnpe.2023.02.0203
Citation: Li Chao, Huang Junlin, Wang Lu, Zhou Keyi. Study on Molecular Dynamics of the Adsorption and Film Formation of Octadecylamine on Carbon Steel Surface[J]. Nuclear Power Engineering, 2023, 44(2): 203-209. doi: 10.13832/j.jnpe.2023.02.0203

十八胺在碳钢表面吸附和成膜的分子动力学研究

doi: 10.13832/j.jnpe.2023.02.0203
基金项目: 国家自然科学基金(52106003,51676035);国家重点研发计划重点专项(2020YFB1901701);南京市留学人员科技创新择优资助项目(1103000294)
详细信息
    作者简介:

    李 超(1996—),男,硕士研究生,主要研究方向为二回路金属腐蚀,E-mail: 292855454@qq.com

    通讯作者:

    黄军林,E-mail: junlin@seu.edu.cn

  • 中图分类号: TL48

Study on Molecular Dynamics of the Adsorption and Film Formation of Octadecylamine on Carbon Steel Surface

  • 摘要: 华龙一号机组主给水系统大量使用P280GH碳钢管道,并应用十八胺(ODA)在管道内壁吸附形成缓蚀膜,ODA可高效抑制腐蚀,避免管道失效和蒸汽发生器(SG)严重结垢。但ODA在碳钢表面的吸附和成膜机理目前仍不明确,严重制约了ODA的性能优化和推广应用,针对该问题,采用分子动力学(MD)模拟开展研究。结果表明,ODA分子头部的氮原子与碳钢表面铁原子形成配位键,促使ODA分子吸附“锚定”。所形成缓蚀膜的微观构型与ODA浓度相关。浓度较低时,缓蚀膜呈ODA分子尾链间交织较差的单层构型,随着浓度增加,缓蚀膜逐渐演变为ODA分子尾链间紧密交织的复杂双层构型。在ODA浓度超过一定阈值后,缓蚀膜的构型不再显著变化,未吸附成膜的ODA分子最终积聚形成胶体微团。

     

  • 图  1  单ODA分子吸附模型的初始结构和模拟结果

    Figure  1.  Initial Structure and Simulation Result of Single ODA Molecular Adsorption Model

    图  2  多ODA分子成膜模型的初始结构(含27个ODA分子)   

    Figure  2.  Initial Structure of the Film Forming Model for Multiple ODA Molecules (Containing 27 ODA Molecules)

    图  3  氮原子与铁原子的径向函数分布图

    Figure  3.  Radial Distribution Function of Nitrogen and Iron Atoms     

    图  4  ODA分子在液相和真空环境中的吸附轨迹

    区域B—液相中氮原子平衡吸附位置;区域C—真空中氮原子平衡吸附位置;红点—出发点;红色箭头—初始运动方向;徘徊区—氮原子寻找吸附点位区域;x—原子在 x 方向的坐标;位置A—拐点位置

    Figure  4.  Adsorption Trajectories of ODA Molecules in Liquid Phase and Vacuum Environments

    图  5  ODA分子数分别为9、18、27和36时平衡吸附构型

    俯视图e~h为显示清晰,整个ODA分子用黄色表示;侧视图a~d中ODA分子颜色仍与前文一致

    Figure  5.  Equilibrium Adsorption Configurations When the Numbers of ODA Molecules are 9, 18, 27 and 36 Respectively

    图  6  41个ODA分子在Fe(001)晶面吸附成膜构型

    Figure  6.  Configuration of Film Formed by Adsorption of 41 ODA Molecules on the Crystal Surface of Fe(001)

    图  7  ODA随浓度变化在碳钢表面形成缓蚀膜示意图

    Carbon steel—碳钢

    Figure  7.  Schematic Diagram of the Corrosion Inhibition Film Formation on Carbon Steel Surface by ODA Varying with the Concentration

  • [1] RODRÍGUEZ M A. Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review[J]. Corrosion Reviews, 2020, 38(3): 195-230. doi: 10.1515/corrrev-2020-0015
    [2] 严巍峰,刘建民. 卧式蒸汽发生器排污穴室水力冲洗设备的研发和应用[J]. 核动力工程,2019, 40(1): 101-104.
    [3] ATTA A M, EL-MAHDY G A, ALLOHEDAN H A, et al. Adsorption characteristics and corrosion inhibition efficiency of ethoxylated octadecylamine ionic liquid in aqueous acid solution[J]. International Journal of Electrochemical Science, 2016, 11(2): 882-898.
    [4] JÄPPINEN E, IKÄLÄINEN T, JÄRVIMÄKI S, et al. Corrosion behavior of carbon steel coated with octadecylamine in the secondary circuit of a pressurized water reactor[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 6037-6046. doi: 10.1007/s11665-017-3035-6
    [5] BENÍTEZ J J, SALMERON M. Kinetic effects in the self-assembly of pure and mixed tetradecyl and octadecylamine molecules on mica[J]. Surface Science, 2006, 600(6): 1326-1330. doi: 10.1016/j.susc.2006.01.027
    [6] EPRI. Pressurized Water Reactor (PWR)/Pressurized Heavy Water Reactor (PHWR) Secondary Side Filming Product (FP) Application: technical assessment program development, candidate FP status, and recommended compatibility testing: 3002015894[R]. USA: EPRI, Palo, Alto, 2019.
    [7] ODAR S. Use of film forming amines (FFA) in nuclear power plants for lay-up and power operation[Z]. Sweden: ANT International, 2017.
    [8] BETOVA I, BOJINOV M, SAARIO T. Film-forming amines in steam/water cycles: structure, properties, and influence on corrosion and deposition processes: VTT-R-03234-14[R]. Espoo: VTT Technical Research Centre of Finland, 2014: 1-41.
    [9] GENXIAN L, YUN S, CANSHUAI L, et al. Adsorption behaviour of film-forming amine on pre-oxidized carbon steel surface[J]. Nuclear Engineering and Technology, 2022, 54(4): 1185-1194. doi: 10.1016/j.net.2021.10.025
    [10] LIU C S, LIN G X, SUN Y, et al. Effect of octadecylamine concentration on adsorption on carbon steel surface[J]. Nuclear Engineering and Technology, 2020, 52(10): 2394-2401. doi: 10.1016/j.net.2020.03.026
    [11] TANG Y M, YAO L L, KONG C M, et al. Molecular dynamics simulations of dodecylamine adsorption on iron surfaces in aqueous solution[J]. Corrosion Science, 2011, 53(5): 2046-2049. doi: 10.1016/j.corsci.2011.01.051
    [12] KORNHERR A, NAUER G E, SOKOL A A, et al. Adsorption of organosilanes at a Zn-terminated ZnO (0001) surface: molecular dynamics study[J]. Langmuir, 2006, 22(19): 8036-8042. doi: 10.1021/la0604432
    [13] ZHANG C, ZHAO J M. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution[J]. Corrosion Science, 2017, 126: 247-254. doi: 10.1016/j.corsci.2017.07.006
    [14] SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. doi: 10.1021/jp980939v
    [15] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987:59
    [16] WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts[J]. Chemical Physics Letters, 1971, 10(3): 257-261. doi: 10.1016/0009-2614(71)80281-6
    [17] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
    [18] BAUX J, CAUSSÉ N, ESVAN J, et al. Impedance analysis of film-forming amines for the corrosion protection of a carbon steel[J]. Electrochimica Acta, 2018, 283: 699-707. doi: 10.1016/j.electacta.2018.06.189
    [19] MAO F X, DONG C F, MACDONALD D D. Effect of octadecylamine on the corrosion behavior of Type 316SS in acetate buffer[J]. Corrosion Science, 2015, 98: 192-200. doi: 10.1016/j.corsci.2015.05.022
    [20] 谢建丽,邓佳杰,胡家元. 十八胺高温成膜特性及成膜形态[J]. 材料保护,2012, 45(3): 69-71.
    [21] XIE S W, LIU Z, HAN G C, et al. Molecular dynamics simulation of inhibition mechanism of 3, 5-dibromo salicylaldehyde Schiff's base[J]. Computational and Theoretical Chemistry, 2015, 1063: 50-62. doi: 10.1016/j.comptc.2015.04.003
    [22] DOOLEY B, LISTER D. Flow-accelerated corrosion in steam generating plants[J]. PowerPlant Chemistry, 2018, 20(4): 194-244.
  • 加载中
图(7)
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  34
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-12-26
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回