Application Research of Neutron Flux Detector in Irradiation Damage of Fast Reactor Structural Materials
-
摘要: 为评估快堆结构材料的辐照损伤,本文提出了一套快堆结构材料辐照损伤评价方法。根据快堆能谱特点设计中子注量探测器辐照方案,分析探测片特性和反应道截面,选取7种快中子注量探测器。同时采用迭代法在Labview平台中开发了解谱程序。基于俄罗斯碳化硼组件辐照实验数据进行解谱,并结合Lindhard-Robinson模型组件包壳原子平均离位(dpa)计算,同时与SPECTER 计算值进行对比。结果表明,本文采取的实验方法得到的dpa与SPECTER计算值偏差在6%以内,符合较好。本文建立了一套完善的快堆结构材料辐照损伤评价体系,对结构材料的辐照损伤监测具有重要意义。Abstract: In order to evaluate the radiation damage of fast reactor structural materials, a set of evaluation methods for radiation damage of fast reactor structural materials is proposed in this paper. According to the characteristics of the fast reactor energy spectrum, the irradiation scheme of the neutron flux detector is designed, the characteristics of the detector foil and the section of the reaction channel are analyzed, and seven kinds of fast neutron flux detectors are selected. At the same time, the iterative method is used to develop the spectrum analysis program in Labview platform. Based on the radiation experimental data of the Russian boron carbide module, the spectrum is analyzed, and combined with the calculation of the module cladding dpa of the Lindhard-Robinson model, and compared with the calculated value of SPECTER. The results show that the deviation between the dpa obtained by the experimental method and the calculated value of SPECTER is within 6%, which is in good agreement. In this paper, a complete set of radiation damage evaluation system for fast reactor structural materials is established, which is of great significance to the radiation damage monitoring of structural materials.
-
Key words:
- Radiation damage /
- Fast reactor /
- Spectrum analysis
-
表 1 CEFR主要参数
Table 1. Main Parameters of CEFR
参数名 参数值 额定热功率/MW 65 净电功率/MW 20 堆芯等效直径/mm 600 堆芯高度/mm 450 最大燃耗/[MW·d·t−1(U)] 6×104 辐照周期/d 80 换料周期/d 240 表 2 CEFR拟选用的探测片及反应道
Table 2. Activation Foil and Reaction Channel to be Selected by CEFR
核素 核反应 富集度/% 半衰期 待测能量/keV 有效阈能/MeV 47Ti 47Ti(n,p)47Sc 7.28 3.39 d 159.39 2.2 58Ni 58Ni(n,p)58Co 67.88 70.83 d 810.759 2.8 64Zn 64Zn(n,p)64Cu 48.9 12.70 h 1345.77 3.0 54Fe 54Fe(n,p)54Mn 5.845 312.13 d 834.838 3.1 46Ti 46Ti(n,p)46Sc 7.28 83.34 d 889.258 3.9 24Mg 24Mg(n,p)24Na 78.99 15.00 h 1368.60 6.8 27Al 27Al(n, α)24Na 100 15.00 h 1368.60 7.2 48Ti 48Ti(n,p)48Sc 73.94 44.0 h 175 7.6 63Cu 63Cu(n,α)60Co 0.691 5.2714 a 1173.24 6.8 93Nb 93Nb(n,n’)93Nbm 1 16.13 a 30.77 1.0 89Y 89Y (n,2n)88Y 1 106.65 d 898.04 9.6 表 3 快中子注量探测器
Table 3. Fast Neutron Flux Detector
核素 核反应 平均反应截面/mb 能量/MeV 强度/% 46Ti 46Ti(n,p)46Sc 11.6 0.889 100 1.121 100 54Fe 54Fe(n,p)54Mn 80.5 0.835 99.975 58Ni 58Ni(n,p)58Co 108.5 0.811 99.4 63Cu 63Cu(n,α)60Co 0.5 1.173 99.85 1.332 99.98 93Nb 93Nb(n,n’)93mNb 146.2 0.01652 9.25 55Mn 55Mn(n,2n)54Mn 0.2 0.834 99.98 89Y 89Y (n,2n)88Y 0.15 0.898 93.9 1 b=10−28 m2 位置 距堆芯
中心标
高/mm核反应截面 93Nb(n,n')93Nbm 93Nb(n,g)94Nb 54Fe(n,p)54Mn 46Ti(n,p)46Sc 63Cu(n,α)60Co 活度/106 Bq 单核反应
率/10−11活度/104 Bq 单核反应
率/10−10活度/106 Bq 单核反应
率/10−12活度/105 Bq 单核反应
率/10−13活度/104 Bq 单核反应
率/10−14位置1 +275 1.802 1.752 1.564 1.869 0.760 4.066 1.465 4.968 0.602 2.210 位置2 0 8.360 7.940 2.365 2.599 4.656 25.360 未布置Ti片和Cu片 位置3 −200 6.310 5.845 2.127 2.346 3.315 18.235 7.925 23.115 2.841 10.160 表 5 实验值与计算值对比
Table 5. Comparison between Experimental Value and Theoretical Value
位置 距堆芯中心标高/mm 模式 dpa值 与俄罗斯实验值偏差/% 位置1 +275 俄罗斯报告实验值 13.26 根据探测片活度计算的实验值 12.86 −3.01 SPECTER计算值 13.10 −1.21 位置2 0 俄罗斯报告实验值 18.6 根据探测片活度计算的实验值 18.2 2.15 SPECTER计算值 19.2 3.23 位置3 –200 俄罗斯报告实验值 13.46 根据探测片活度计算的实验值 13.28 1.33 SPECTER计算值 14.26 5.94 -
[1] 郁金南. 材料辐照效应[M]. 北京: 化学工业出版社, 2007: 1. [2] AMIRKHANI M A, ASADI ASADABAD M, HASSANZADEH M, et al. Calculation of dpa rate in graphite box of Tehran Research Reactor (TRR)[J]. Nuclear Science and Techniques, 2019, 30(6): 92. doi: 10.1007/s41365-019-0621-3 [3] CHEN X L, ZHOU K Y, CHEN X X. Analysis of irradiation ability of China experimental fast reactor: IAEA-CN245-108[R]. Russia: IAEA, 2017. [4] 喻宏, 陈晓亮, 胡定胜, 等. 一种钠冷快堆中进行活化法辐照实验的系统及方法: 中国, CN102842348A [P]. 2012-12-26. [5] 张鹏,王侃,李满仓,等. 蒙特卡罗均匀化与多群蒙特卡罗输运研究[J]. 核动力工程,2012, 33(4): 24-28. [6] MALKAWI S R, AHMAD N. Solution of the neutron spectrum adjustment problem in a typical MTR type research reactor[J]. Annals of Nuclear Energy, 2000, 28(1): 25-51. [7] 李达,张文首,江新标,等. 西安脉冲堆大空间中子辐照实验平台辐射场参数测量[J]. 原子能科学技术,2014, 48(7): 1243-1249. doi: 10.7538/yzk.2014.48.07.1243 [8] 陈树学, 刘萱. LabVIEW宝典[M]. 北京: 电子工业出版社, 2011: 3. [9] 俄罗斯联邦科学中心-核反应堆科学研究院. CEFR反应堆硼屏蔽组件吸收元件反应堆辐照后研究结果总结报告[Z]. 沙仁礼 译. 2004. [10] MACFARLANE R E, MUIR D W. The NJOY nuclear data processing system version 91: LA-12740-M[R]. Washington: Los Alamos National Laboratory, 1994. [11] HEYDARZADE A, KASESAZ Y, et al. Coupling the SAND-II and MCNPX codes for neutron spectrum unfolding[J]. Journal of Instrumentation, 2018, 13(8): 08010. [12] GREENWOOD L R, SMITHER R K. SPECTER: neutron damage calculations for materials irradiations: ANL/FPP/TM-197[R]. Argonne: Argonne National Laboratory, 1985. [13] AOYAMA T, SEKINE T, TABUCHI S. Characterization of neutron field in the experimental fast reactor JOYO for fuel and structural material irradiation test[J]. Nuclear Engineering and Design, 2004, 228(1-3): 21-34. doi: 10.1016/j.nucengdes.2003.06.003