Convergence Optimization of 2D MOC/1D SN Method via Generalized Equivalence Theory Based CMFD Acceleration
-
摘要: 基于广义等价理论的CMFD (GET-CMFD)方法具有较好的收敛性,并成功应用到基于轴向节块展开法(NEM)的2D/1D算法中。然而,当采用具有更高精度的离散纵标法(SN)作为轴向求解器时,2D/1D算法面临不收敛的问题。为了解决此问题,本文针对采用各向同性泄漏项和各向异性泄漏项2种情况,对GET-CMFD中的轴向节块不连续因子(NDF)和轴向修正扩散因子(MDF)进行改进,同时对2D/1D耦合算法中关键的泄漏项分割技术的使用条件进行系统研究。计算结果显示:GET-CMFD方法中轴向NDF和轴向MDF采用2D MOC计算归并的通量进行计算,同时2D/1D算法中泄漏项采用最新更新的数值可以获得好的收敛性。泄漏项分割方法的使用条件采用出射角通量小于0修正可以在保证收敛性的同时降低精度损失。在一次2D/1D迭代过程内采用2次SN计算可以在计算量几乎不提升的前提下,显著降低迭代次数, 提高收敛性。通过对GET-CMFD方法,泄漏项分割技术使用条件以及迭代流程的改进,算法的收敛性可以得到明显提高。
-
关键词:
- 广义等价理论的CMFD /
- 2D/1D /
- 节块不连续因子(NDF) /
- 修正扩散因子(MDF) /
- 各向同性泄漏项 /
- 各向异性泄漏项 /
- 泄漏项分割方法
Abstract: The generalized equivalence theory based CMFD (GET-CMFD) has great convergence behavior and has been successfully applied to the axial NEM based 2D/1D coupling method. However, when applying the high precision SN as the axial solver, the 2D/1D coupling method faces the convergence problem. To solve this problem, in the case of isotropic transverse leakage and anisotropic transverse leakage, the source of the scalar flux of axial nodal discontinuity factor (NDF) and axial modified diffusion factor (MDF) in the GET-CMFD are optimized. At the same time, the application conditions of the transverse leakage splitting method in 2D/1D coupling method are studied systematically. The results show that by adopting the scalar flux from 2D MOC calculation for the axial NDF axial and MDF in the GET-CMFD equation and adopting the latest updated value of leakage term, 2D/1D coupling method can obtain good convergence. The application condition of the transverse leakage splitting method is that the outgoing angular flux is less than 0, which can guarantee convergence and reduce the precision loss. At the same time, using SN calculation twice in a 2D/1D iteration can significantly reduce the number of iterations without increasing the computational load. By improving the GET-CMFD equation, the leakage splitting method and the iterative process, the convergence of 2D/1D coupling method can be improved obviously. -
表 1 各向同性泄漏项时计算流程对比
Table 1. Comparisons of Calculation Flow of Isotropic Transverse Leakage
方案 第1次SN泄漏
项的来源第1次MOC泄漏
项的来源第2次SN泄漏
项的来源轴向NDF/MDF
通量的来源KUCA基准题 自制算例 迭代次数 误差/pcm 迭代次数 误差/pcm 1 GET-CMFD SN MOC GET-CMFD 34 −715 20 −416 2 GET-CMFD SN GET-CMFD GET-CMFD 52 −715 21 −416 3 GET-CMFD GET-CMFD MOC GET-CMFD 110 −715 26 −416 4 GET-CMFD GET-CMFD GET-CMFD GET-CMFD 108 −715 27 −416 5 MOC SN MOC GET-CMFD 56 −715 21 −416 6 MOC SN GET-CMFD GET-CMFD 55 −715 21 −416 7 MOC GET-CMFD MOC GET-CMFD 110 −715 26 −416 8 MOC GET-CMFD GET-CMFD GET-CMFD 108 −715 27 −416 9 GET-CMFD SN MOC SN 未收敛 20 −416 10 GET-CMFD SN GET-CMFD SN 未收敛 25 −416 11 GET-CMFD GET-CMFD MOC SN 未收敛 28 −416 12 GET-CMFD GET-CMFD GET-CMFD SN 未收敛 42 −416 13 MOC SN MOC SN 52 −715 21 −416 14 MOC SN GET-CMFD SN 未收敛 21 −416 15 MOC GET-CMFD MOC SN 未收敛 28 −416 16 MOC GET-CMFD GET-CMFD SN 未收敛 28 −416 表 2 各向异性泄漏项时计算流程对比
Table 2. Comparisons of Calculation Flow of Anisotropic Transverse Leakage
方案 轴向NDF/MDF计算
所用通量来源KUCA基准题 自制算例 迭代次数 误差/pcm 迭代次数 误差/pcm 1 GET-CMFD 24 8 20 14 2 SN 未收敛 22 14 表 3 各向同性泄漏项时泄漏项修正条件分析
Table 3. Analysis of Transverse Leakage Correction Conditions of Isotropic Transverse Leakage Term
方案 SN修正区域 SN修正条件 MOC修正区域 MOC修正条件 KUCA基准题 自制算例 迭代次数 数值结果 迭代次数 数值结果 1 薄层 L>0 栅元 L>0 21 0.95700 15 1.00548 2 厚层 21 0.95680 15 1.00557 3 薄层 Q<0 平源区 Q<0 未收敛 15 0.99508 4 厚层 未收敛 15 0.99508 5 薄层 Q<0 栅元 Q<0 未收敛 15 0.99509 6 厚层 未收敛 15 0.99509 7 薄层 $\varphi < 0$ 平源区 $\varphi < 0$ 23 0.95526 15 0.99508 8 不修正 不修正 24 0.95525 15 0.99508 表 4 不同修正条件下自制算例通量对比
Table 4. Scalar Flux Comparison among Different Negative Flux Correction Conditions
方案 燃料区通量/(cm–2 ·s–1) 控制棒通量/(cm–2·s–1) 反射层通量/(cm–2·s–1) 能群1 能群2 能群1 能群2 能群1 能群2 1 4.886×10−3 8.669×10−4 1.227×10−3 2.472×10−4 5.943×10−4 8.839×10−4 2 4.886×10−3 8.671×10−4 1.225×10−3 2.472×10−4 5.951×10−4 8.840×10−4 7 4.877×10−3 8.682×10−4 1.221×10−3 2.475×10−4 6.004×10−4 8.932×10−4 8 4.877×10−3 8.682×10−4 1.221×10−3 2.474×10−4 6.004×10−4 8.932×10−4 表 5 各向异性泄漏项时负角通量修正条件的KUCA基准题计算结果
Table 5. Results of Negative Angular Flux Correction Conditions of Anisotropic Leakage Term
计算算例 迭代次数 keff误差/pcm 燃料区通量误差/% 反射层通量误差/% 控制棒空隙通量误差/% 能群1 能群2 能群1 能群2 能群1 能群2 KUCA-控制棒 24 8 −0.36 −0.17 −0.04 0.12 −0.14 −0.08 KUCA-空隙 68 −42 0.24 0.21 0.50 −0.09 −0.13 −0.39 表 6 2次SN计算对迭代次数的影响
Table 6. Influence of Twice SN on Number of Iterations
方案 KUCA控制棒 KUCA空隙 3×3算例 7×7算例 17×17算例 迭代次数 keff 迭代次数 keff 迭代次数 keff 迭代次数 keff 迭代次数 keff 1次SN 34 0.96248 87 0.97738 83 0.20041 90 0.58311 94 0.91474 2次SN 24 0.96248 66 0.97738 47 0.20041 42 0.58311 41 0.91474 -
[1] 高明敏, 曹欣荣, 朱成林. 2D/1D耦合堆芯计算程序开发及验证[C]//中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集. 北京: 中囯原子能出版社, 2015. [2] 吴文斌. 基于并行技术的2D/1D耦合三维全堆输运方法研究[D]. 北京: 清华大学, 2014. [3] 张知竹,李庆,王侃. 三维特征线的并行方法研究[J]. 原子能科学技术,2013, 47(S1): 38-42. [4] 汪岸,胡长军,王根,等. 直接三维中子输运特征线法并行计算软件的实现[J]. 原子能科学技术,2021, 55(9): 1559-1568. [5] SHEN Q C, WANG Y R, JABAAY D, et al. Transient analysis of C5G7-TD benchmark with MPACT[J]. Annals of Nuclear Energy, 2019, 125: 107-120. doi: 10.1016/j.anucene.2018.10.049 [6] 康乐,郝琛. 精细化中子输运计算程序HNET动力学计算初步验证[J]. 哈尔滨工程大学学报,2021, 42(12): 1762-1768. [7] WANG B, LIU Z Y, CHEN J, et al. A modified predictor-corrector quasi-static method in NECP-X for reactor transient analysis based on the 2D/1D transport method[J]. Progress in Nuclear Energy, 2018, 108: 122-135. doi: 10.1016/j.pnucene.2018.05.014 [8] ZHAO C, PENG X J. Exploitation and validation of one-step neutron transport equation calculation program KuaFu[J]. Nuclear Power Energy, 2018: 1-6. [9] 唐霄,李庆,柴晓明,等. MOC/SN耦合三维中子输运程序KYCORE开发与初步验证[J]. 强激光与粒子束,2017, 29(3): 036022. [10] ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007 [11] XU Y, DOWNAR T. Convergence analysis of a CMFD method based on generalized equivalence theory[C]//Proceedings of the Advances in Reactor Physics-Linking Research, Industry, and Education. Knoxville, USA, 2012. [12] HAO C, KANG L, XU Y L, et al. 3D whole-core neutron transport simulation using 2D/1D method via multi-level generalized equivalence theory based CMFD acceleration[J]. Annals of Nuclear Energy, 2018, 122: 79-90. doi: 10.1016/j.anucene.2018.08.014 [13] ZHOU X Y, LIU Z Y, CAO L Z, et al. Convergence analysis for the CMFD accelerated 2D/1D neutron transport calculation method based on Fourier analysis[J]. Annals of Nuclear Energy, 2022, 170: 108982. doi: 10.1016/j.anucene.2022.108982 [14] 郑勇. 矩阵特征线方法加速技术及三维中子输运计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [15] 孔勃然,朱凯杰,刘保坤,等. 改进泄漏项分割技术的二维/一维耦合方法[J]. 哈尔滨工程大学学报,2021, 42(12): 1813-1818.