高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析

刘佳伦 李会雄 张顺哲 宁亮 唐凌虹

刘佳伦, 李会雄, 张顺哲, 宁亮, 唐凌虹. 基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析[J]. 核动力工程, 2023, 44(3): 79-89. doi: 10.13832/j.jnpe.2023.03.0079
引用本文: 刘佳伦, 李会雄, 张顺哲, 宁亮, 唐凌虹. 基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析[J]. 核动力工程, 2023, 44(3): 79-89. doi: 10.13832/j.jnpe.2023.03.0079
Liu Jialun, Li Huixiong, Zhang Shunzhe, Ning Liang, Tang Linghong. Analysis on Thermal Hydraulic Characteristic of Helical Coiled Tube Steam Generator of Liquid Metal Fast Reactor Based on Drift-Flux Model[J]. Nuclear Power Engineering, 2023, 44(3): 79-89. doi: 10.13832/j.jnpe.2023.03.0079
Citation: Liu Jialun, Li Huixiong, Zhang Shunzhe, Ning Liang, Tang Linghong. Analysis on Thermal Hydraulic Characteristic of Helical Coiled Tube Steam Generator of Liquid Metal Fast Reactor Based on Drift-Flux Model[J]. Nuclear Power Engineering, 2023, 44(3): 79-89. doi: 10.13832/j.jnpe.2023.03.0079

基于漂移流模型的液态金属快堆螺旋管蒸汽发生器热工水力特性分析

doi: 10.13832/j.jnpe.2023.03.0079
基金项目: 国家自然科学基金联合基金项目(U20B2036);陕西省自然科学基础研究计划项目(2022JQ-542);陕西省科学技术协会青年人才托举计划项目(20210404)
详细信息
    作者简介:

    刘佳伦(1991—),男,博士研究生,现主要从事铅铋快堆热工水力分析方面的研究,E-mail: ljl.619@163.com

  • 中图分类号: TK124;TL333

Analysis on Thermal Hydraulic Characteristic of Helical Coiled Tube Steam Generator of Liquid Metal Fast Reactor Based on Drift-Flux Model

  • 摘要: 在液态金属快堆螺旋管蒸汽发生器中,存在一个普遍问题,其一次侧的进、出口温差大幅升高,二次侧出口蒸汽过热度显著增大,这给其设计及运行带来了挑战。基于离散网格法建立了液态金属快堆螺旋管蒸汽发生器热工水力分析模型。模型对整个一、二次侧回路进行网格划分,采用漂移流模型计算二次侧水-水蒸汽的流动与传热,并在一次侧计算中采用液态金属物性与流动传热关联式;采用内节点法对壁面划分网格,考虑两侧流体与管壁间的对流换热以及壁面导热。基于实验数据验证模型可靠性。以铅铋快堆为例,研究不同入口条件下蒸汽发生器的热工水力特性。研究发现一、二次侧之间的壁面热流密度沿程分布极为不均匀,且热流密度峰值极高。算例中壁面热流密度最大值达到1361 kW/m2,最大值与最小值间相差数十倍到数百倍。随着一次侧入口铅铋温度以及铅铋流速的增加,二次侧过冷水区及两相区长度明显缩短,过热蒸汽区长度明显增大;同时,壁面热流密度峰值向螺旋管入口方向移动,二次侧工质压降明显增大。

     

  • 图  1  螺旋管蒸汽发生器结构示意图

    Figure  1.  Schematic Diagram of the Structure of Helical Coiled Tube Steam Generator

    图  2  螺旋管蒸汽发生器网格离散示意图

    Figure  2.  Grid Discretization of Helical Coiled Tube Steam Generator

    图  3  管壁面内部节点参数示意图

    Figure  3.  Schematic Diagram of the Node Parameters Inside the Tube Wall

    图  4  本文模型计算结果与实验数据的对比

    Figure  4.  Comparison between the Calculation Results of the Present Model and the Experimental Data

    图  5  一次侧铅铋温度、螺旋管外壁温、内壁温、二次侧水-水蒸汽温度的沿程分布计算结果

    Figure  5.  Along-Channel Distribution Calculation Results of the Lead Bismuth Temperature on the Primary Side, Outer Tube Wall Temperature, Inner Tube Wall Temperature, and the Water-Steam Temperature on the Secondary Side

    图  6  二次侧工质蒸汽热平衡干度沿程分布计算结果

    Figure  6.  Calculation Results of Thermodynamic Equilibrium Dryness of Working Medium along the Secondary Side

    图  7  螺旋管内壁面热流密度沿程分布计算结果

    Figure  7.  Calculation Results of the Heat Flux Distribution along the Inner Wall of Helical Coiled Tube

    图  8  螺旋管内、外壁面传热系数沿程分布计算结果

    Figure  8.  Calculation Results of the Heat Transfer Coefficient Distribution along the Inner and Outer Wall of Helical Coiled Tube

    图  9  螺旋管壁面径向各节点处的沿程温度分布计算结果

    Figure  9.  Calculation Results of Metal Temperature at Each Node in the Radial Direction of Helical Coiled Tube Wall

    图  10  二次侧沿程工质压降分布及工质流速分布的计算结果

    Figure  10.  Calculation Results of Pressure Drop and Fluid Velocity Distribution of Working Medium along the Secondary Side

    图  11  不同入口铅铋温度下一、二次侧流体温度沿程分布计算结果

    Figure  11.  Calculation Results of the Fluid Temperature Distribution along the Primary Side and the Secondary Side under Different Inlet Lead Bismuth Temperatures

    图  12  不同入口铅铋温度下螺旋管内壁面热流密度沿程分布计算结果

    Figure  12.  Calculation Results of the Heat Flux Distribution along the Inner Wall of Helical Coiled Tube under Different Inlet Lead Bismuth Temperatures

    图  13  不同入口铅铋温度下二次侧工质沿程压降分布的计算结果

    Figure  13.  Calculation Results of Pressure Drop Distribution along the Secondary Side of the Working Medium under Different Inlet Lead Bismuth Temperatures

    图  14  不同入口铅铋流速下一、二次侧流体温度沿程分布计算结果

    Figure  14.  Calculation Results of the Fluid Temperature Distribution on the Primary Side and the Secondary Side under Different Inlet Lead Bismuth Velocities

    图  15  不同入口铅铋流速下螺旋管内壁面热流密度沿程分布计算结果

    Figure  15.  Calculation Results of the Heat Flux Distribution along the Inner Wall of Helical Coiled Tube under Different Inlet Lead Bismuth Velocities

    图  16  不同入口铅铋流速下二次侧工质沿程压降分布的计算结果

    Figure  16.  Calculation Results of Pressure Drop Distribution along the Secondary Side of Working Medium under Different Inlet Lead Bismuth Velocities

    表  1  本文模型中流动阻力及传热关联式的选择

    Table  1.   Flow Resistance and Heat Transfer Correlations Selected in the Present Model

    工况传热关联式阻力关联式
    一次侧液态金属单相区赵后剑[18]Gilli[19]
    二次侧水-水蒸汽单相区-层流Schmidt[20]Ito[22]
    单相区-紊流Mori-Nakayma[21]
    两相区-过冷沸腾Chen[23]Santini[24]
    两相区-核态沸腾
    下载: 导出CSV

    表  2  本文模型计算结果与设计值[26]对比

    Table  2.   Comparison between the Calculation Results of the Present Model and the Design Parameters

    蒸汽发生器运行参数原始设计值本文计算值误差/%
    单台功率/MW125124.590.3
    一次侧出口温度/℃292292.230.1
    一次侧压降/kPa7268.604.72
    二次侧出口温度/℃317319.120.67
    二次侧压降/kPa296284.203.99
    下载: 导出CSV

    表  3  本文模型计算结果与设计值[28]对比

    Table  3.   Comparison between the Calculation Results of the Present Model and the Design Values

    蒸汽发生器运行参数原始设计值本文计算值误差/%
    一次侧出口钠温度/℃308.85307.920.3
    二次侧出口蒸汽温度/℃456.85453.750.68
    下载: 导出CSV

    表  4  本节算例中螺旋管蒸汽发生器结构、工况参数

    Table  4.   Structural Parameters and Operation Conditions of Helical Coiled Tube Steam Generator Studied in the Examples of this Section

    参数参数值
    结构参数螺旋管长度/m20
    螺旋直径/mm500
    螺旋上升角
    管道内径/mm9
    管道外径/mm12.2
    工况参数二次侧入口压力/MPa5.0
    二次侧进口质量流速/(kg·m−2·s−1)1000
    二次侧进口温度/℃150
    一次侧进口铅铋温度/℃450
    一次侧进口铅铋流速/(m·s−1)0.7
    下载: 导出CSV
  • [1] 陈仁宗,王冠. 先进小型反应堆技术现状及未来发展趋势研究[J]. 科技视界,2018(3): 15-18.
    [2] 程坤,陆雅哲,陈宏霞,等. 螺旋管内两相流动不稳定性的研究进展综述[J]. 科技视界,2021(7): 70-73.
    [3] SMITH J C, AKEROYD J K. Applying experience in an advanced design (steam generators)[J]. Nuclear Engineering International, 1986, 31(383): 83-86.
    [4] YAO H, CHEN G, LU K L, et al. Study on the systematic thermal-hydraulic characteristics of helical coil once-through steam generator[J]. Annals of Nuclear Energy, 2021, 154: 108096. doi: 10.1016/j.anucene.2020.108096
    [5] YOON J, KIM J P, KIM H Y, et al. Development of a computer code, ONCESG, for the thermal-hydraulic design of a once-through steam generator[J]. Journal of Nuclear Science and Technology, 2000, 37(5): 445-454. doi: 10.1080/18811248.2000.9714917
    [6] ZHANG Y L, WANG D, LIN J S, et al. Development of a computer code for thermal–hydraulic design and analysis of helically coiled tube once-through steam generator[J]. Nuclear Engineering and Technology, 2017, 49(7): 1388-1395. doi: 10.1016/j.net.2017.06.017
    [7] 刘法钰,张小英,陈佳跃,等. 螺旋管直流蒸汽发生器一、二次侧耦合传热特性分析[J]. 核动力工程,2020, 41(5): 24-29.
    [8] XIA G L, YUAN Y, PENG M J, et al. Numerical studies of a helical coil once-through steam generator[J]. Annals of Nuclear Energy, 2017, 109: 52-60. doi: 10.1016/j.anucene.2017.05.025
    [9] 袁媛,彭敏俊,夏庚磊,等. 螺旋管式直流蒸汽发生器热工水力分析模型[J]. 原子能科学技术,2014, 48(S1): 251-256.
    [10] 丁雪友,陈志强,文青龙,等. 铅铋快堆螺旋管直流蒸汽发生器热工水力特性数值研究[J]. 核动力工程,2021, 42(4): 21-26.
    [11] YANG Y P, LI Y, WANG C L, et al. Parametric sensitivity analysis of liquid metal helical coil once-through tube steam generator[J]. Nuclear Engineering and Design, 2021, 383: 111427. doi: 10.1016/j.nucengdes.2021.111427
    [12] 王聪,张巍,李净松,等. 螺旋管式直流蒸汽发生器壳侧流场数值模拟方法研究[J]. 核动力工程,2021, 42(4): 171-175. doi: 10.13832/j.jnpe.2021.04.0171
    [13] XU R S, ZHANG D L, TIAN W X, et al. Thermal-hydraulic analysis code development for sodium heated once-through steam generator[J]. Annals of Nuclear Energy, 2019, 127: 385-394. doi: 10.1016/j.anucene.2018.12.027
    [14] ISHII M. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes: ANL-77-47[R]. UChicago Argonne: Argonne National Laboratory, 1977.
    [15] WANG J J, LI Y Z, WANG L, et al. Thermal prediction of transient two-phase flow in cryogenic transportation based on drift-flux model[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121512. doi: 10.1016/j.ijheatmasstransfer.2021.121512
    [16] RICOTTI M E. Experimental investigation and numerical simulation of the two-phase flow in the helical coil steam generator[D]. Milan: Politecnico Di Milano, 2013.
    [17] 陶文铨. 数值传热学[M]. 第二版. 西安: 西安交通大学出版社, 2001: 96-98.
    [18] 赵后剑,谢箫阳,高伟凯,等. 液态铅铋合金横掠管束对流换热数值计算[J]. 工程热物理学报,2021, 42(7): 1837-1843.
    [19] GILLI P V. Heat transfer and pressure drop for cross flow through banks of multistart helical tubes with uniform inclinations and uniform longitudinal pitches[J]. Nuclear Science and Engineering, 1965, 22(3): 298-314. doi: 10.13182/NSE65-A20934
    [20] SCHMIDT I E F. Wärmeübergang und druckverlust in rohrschlangen[J]. Chemie Ingenieur Technik, 1967, 39(13): 781-789. doi: 10.1002/cite.330391302
    [21] MORI Y, NAKAYAMA W. Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 37-59. doi: 10.1016/0017-9310(67)90182-2
    [22] ITŌ H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering, 1959, 81(2): 123-132. doi: 10.1115/1.4008390
    [23] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
    [24] SANTINI L, CIONCOLINI A, LOMBARDI C, et al. Two-phase pressure drops in a helically coiled steam generator[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4926-4939. doi: 10.1016/j.ijheatmasstransfer.2008.02.034
    [25] CONCETTA F. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies[M]. Paris: OECD, 2015: 830-835.
    [26] CINOTTI L, BRUZZONE M, MEDA N, et al. Steam generator of the international reactor innovative and secure[C]//10th International Conference on Nuclear Engineering. Arlington: ASME, 2002: 983-990.
    [27] SANTINI L, CIONCOLINI A, BUTEL M T, et al. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 92: 91-99. doi: 10.1016/j.ijheatmasstransfer.2015.08.012
    [28] 张建民,李京光,桑维良. 钠冷快堆蒸汽发生器的模块化模型及瞬态仿真研究[J]. 核动力工程,1999, 20(1): 79-83.
    [29] LAHEY R T, MOODY F J. The thermal-hydraulics of a boiling water nuclear reactor[M]. 2nd ed. La Grange Park: American Nuclear Society, 1993: 199-200.
    [30] CIONCOLINI A, CAMMI A, LOMBARDI C, et al. Thermal hydraulic analysis of iris reactor coiled tube steam generator[C]//American Nuclear Society Topical Meeting in Mathematics & Computations. Gatlinburg: TN, 2003.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  1622
  • HTML全文浏览量:  68
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-08-17
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回