[1] |
GIF Policy Group. Technology roadmap update for Generation IV nuclear energy systems[Z]. USA: OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.
|
[2] |
魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336.
|
[3] |
WANG J, TIAN W X, TIAN Y H, et al. A sub-channel analysis code for advanced lead bismuth fast reactor[J]. Progress in Nuclear Energy, 2013, 63: 34-48. doi: 10.1016/j.pnucene.2012.09.010
|
[4] |
SHI L T, TAN B, WANG C L, et al. Experimental investigation of gas lift pump in a lead-bismuth eutectic loop[J]. Nuclear Engineering and Design, 2018, 330: 516-523. doi: 10.1016/j.nucengdes.2018.01.042
|
[5] |
苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013: 263
|
[6] |
汪振. 铅基研究实验堆假想堆芯解体事故分析研究[D]. 合肥: 中国科学技术大学, 2017.
|
[7] |
苏光辉, 田文喜, 张亚培, 等. 轻水堆核电厂严重事故现象学[M]. 北京: 国防工业出版社, 2016: 77-80.
|
[8] |
WANG J S, CAI Q H, CHEN R H, et al. Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method[J]. Nuclear Engineering and Technology, 2022, 54(1): 162-176. doi: 10.1016/j.net.2021.07.043
|
[9] |
RAHMAN M M, HINO T, MORITA K, et al. Experimental investigation of molten metal freezing on to a structure[J]. Experimental Thermal and Fluid Science, 2007, 32(1): 198-213. doi: 10.1016/j.expthermflusci.2006.11.009
|
[10] |
HOSSAIN M K, HIMURO Y, MORITA K, et al. Experimental study of molten metal penetration and freezing behavior in pin-bundle geometry[J]. Memoirs of the Faculty of Engineering, Kyushu University, 2008, 68(4): 163-174.
|
[11] |
YAMANO H, TOBITA Y. Experimental analyses by SIMMER-III on molten fuel freezing and boiling pool behavior[J]. Journal of Power and Energy Systems, 2009, 3(1): 249-260. doi: 10.1299/jpes.3.249
|
[12] |
Soner M A M, HASEGAWA Y, SEO S, et al. Experimental investigation of solid–liquid mixtures freezing behavior in flow channels[J]. Nuclear Engineering and Design, 2011, 241(10): 4223-4235. doi: 10.1016/j.nucengdes.2011.08.027
|
[13] |
CHEN R H, CHEN L, GUO K L, et al. Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS[J]. Annals of Nuclear Energy, 2017, 102: 422-439. doi: 10.1016/j.anucene.2017.01.007
|
[14] |
CHEN R H, LI Y L, GUO K K, et al. Numerical investigation on the dissolution kinetics of ZrO2 by molten zircaloy using MPS method[J]. Nuclear Engineering and Design, 2017, 319: 117-125. doi: 10.1016/j.nucengdes.2017.05.002
|
[15] |
CAI Q H, ZHU D H, CHEN R H, et al. Three-dimensional numerical study on the effect of sidewall crust thermal resistance on transient MCCI by improved MPS method[J]. Annals of Nuclear Energy, 2020, 144: 107525. doi: 10.1016/j.anucene.2020.107525
|
[16] |
XIAO X K, CAI Q H, CHEN R H, et al. An improved MPS-DEM numerical model for fluid–solid coupling problem in nuclear reactor[J]. Nuclear Engineering and Design, 2022, 396: 111875. doi: 10.1016/j.nucengdes.2022.111875
|
[17] |
DING W, XIAO X K, CAI Q H, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM[J]. Annals of Nuclear Energy, 2022, 175: 109244. doi: 10.1016/j.anucene.2022.109244
|