高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅基反应堆严重事故下燃料迁徙行为机理实验研究

蔡庆航 陈荣华 肖鑫坤 付浩 田文喜 秋穗正 苏光辉

蔡庆航, 陈荣华, 肖鑫坤, 付浩, 田文喜, 秋穗正, 苏光辉. 铅基反应堆严重事故下燃料迁徙行为机理实验研究[J]. 核动力工程, 2023, 44(3): 90-95. doi: 10.13832/j.jnpe.2023.03.0090
引用本文: 蔡庆航, 陈荣华, 肖鑫坤, 付浩, 田文喜, 秋穗正, 苏光辉. 铅基反应堆严重事故下燃料迁徙行为机理实验研究[J]. 核动力工程, 2023, 44(3): 90-95. doi: 10.13832/j.jnpe.2023.03.0090
Cai Qinghang, Chen Ronghua, Xiao Xinkun, Fu Hao, Tian Wenxi, Qiu Suizheng, Su Guanghui. Experiment Research on the Mechanism of Fuel Migration Behavior under Severe Accident of Lead-based Reactor[J]. Nuclear Power Engineering, 2023, 44(3): 90-95. doi: 10.13832/j.jnpe.2023.03.0090
Citation: Cai Qinghang, Chen Ronghua, Xiao Xinkun, Fu Hao, Tian Wenxi, Qiu Suizheng, Su Guanghui. Experiment Research on the Mechanism of Fuel Migration Behavior under Severe Accident of Lead-based Reactor[J]. Nuclear Power Engineering, 2023, 44(3): 90-95. doi: 10.13832/j.jnpe.2023.03.0090

铅基反应堆严重事故下燃料迁徙行为机理实验研究

doi: 10.13832/j.jnpe.2023.03.0090
基金项目: 国家自然科学基金(11875217)
详细信息
    作者简介:

    蔡庆航(1995—),男,博士研究生,现主要从事核反应堆热工水力及安全分析方面的研究,E-mail: caiqh1995@qq.com

    通讯作者:

    陈荣华,E-mail: rhchen@mail.xjtu.edu.cn

  • 中图分类号: TL425

Experiment Research on the Mechanism of Fuel Migration Behavior under Severe Accident of Lead-based Reactor

  • 摘要: 在铅基反应堆严重事故中,燃料颗粒在堆内迁徙过程中可能导致堆芯堵塞,存在重返临界的风险。为了获得液态铅铋合金(LBE)夹带金属颗粒的流动迁徙行为特性,本研究设计了石英玻璃可视化实验段,搭建了液态LBE夹带颗粒流动凝固行为可视化实验装置Eirene,开展了LBE在圆形通道内的流动凝固实验和LBE夹带不锈钢颗粒的流动凝固实验,获得了液态LBE流动凝固动态特性的影像数据、LBE进出口温度和管壁温度数据。由实验结果可知,颗粒球床的存在会严重阻碍LBE在玻璃管内的流动,且在球床密集区域极易形成凝固堵塞,大量颗粒停留在实验段中段,由外至内逐步形成堵塞。实验结果可为铅基反应堆严重事故分析模型验证提供支持。

     

  • 图  1  Eirene实验装置示意图

    Figure  1.  Schematic Diagram of Eirene Experimental Device

    图  2  实验段

    Figure  2.  Experimental Section

    图  3  Eirene-E1实验典型时刻结果

    Figure  3.  Snapshot of Eirene-E1 Test Results at Representative Moments

    图  4  Eirene-E1实验前沿位置

    Figure  4.  History of Front Position in Eirene-E1 Test

    图  5  Eirene-E1实验段温度结果

    Figure  5.  History of Temperature of Experimental Sections in Eirene-E1 Test

    图  6  Eirene-E2实验前沿位置

    Figure  6.  History of Front Position in Eirene-E2 Test

    图  7  Eirene-P1实验前沿位置

    Figure  7.  History of Front Position in Eirene-P1 Test

    图  8  Eirene-P1实验段温度结果

    Figure  8.  History of Temperature of Experimental Sections in Eirene-P1 Test

    图  9  Eirene-P1实验LBE形态特征

    Figure  9.  Morphological Characteristics of LBE in Eirene-P1 Test     

  • [1] GIF Policy Group. Technology roadmap update for Generation IV nuclear energy systems[Z]. USA: OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.
    [2] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336.
    [3] WANG J, TIAN W X, TIAN Y H, et al. A sub-channel analysis code for advanced lead bismuth fast reactor[J]. Progress in Nuclear Energy, 2013, 63: 34-48. doi: 10.1016/j.pnucene.2012.09.010
    [4] SHI L T, TAN B, WANG C L, et al. Experimental investigation of gas lift pump in a lead-bismuth eutectic loop[J]. Nuclear Engineering and Design, 2018, 330: 516-523. doi: 10.1016/j.nucengdes.2018.01.042
    [5] 苏光辉, 秋穗正, 田文喜. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013: 263
    [6] 汪振. 铅基研究实验堆假想堆芯解体事故分析研究[D]. 合肥: 中国科学技术大学, 2017.
    [7] 苏光辉, 田文喜, 张亚培, 等. 轻水堆核电厂严重事故现象学[M]. 北京: 国防工业出版社, 2016: 77-80.
    [8] WANG J S, CAI Q H, CHEN R H, et al. Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method[J]. Nuclear Engineering and Technology, 2022, 54(1): 162-176. doi: 10.1016/j.net.2021.07.043
    [9] RAHMAN M M, HINO T, MORITA K, et al. Experimental investigation of molten metal freezing on to a structure[J]. Experimental Thermal and Fluid Science, 2007, 32(1): 198-213. doi: 10.1016/j.expthermflusci.2006.11.009
    [10] HOSSAIN M K, HIMURO Y, MORITA K, et al. Experimental study of molten metal penetration and freezing behavior in pin-bundle geometry[J]. Memoirs of the Faculty of Engineering, Kyushu University, 2008, 68(4): 163-174.
    [11] YAMANO H, TOBITA Y. Experimental analyses by SIMMER-III on molten fuel freezing and boiling pool behavior[J]. Journal of Power and Energy Systems, 2009, 3(1): 249-260. doi: 10.1299/jpes.3.249
    [12] Soner M A M, HASEGAWA Y, SEO S, et al. Experimental investigation of solid–liquid mixtures freezing behavior in flow channels[J]. Nuclear Engineering and Design, 2011, 241(10): 4223-4235. doi: 10.1016/j.nucengdes.2011.08.027
    [13] CHEN R H, CHEN L, GUO K L, et al. Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS[J]. Annals of Nuclear Energy, 2017, 102: 422-439. doi: 10.1016/j.anucene.2017.01.007
    [14] CHEN R H, LI Y L, GUO K K, et al. Numerical investigation on the dissolution kinetics of ZrO2 by molten zircaloy using MPS method[J]. Nuclear Engineering and Design, 2017, 319: 117-125. doi: 10.1016/j.nucengdes.2017.05.002
    [15] CAI Q H, ZHU D H, CHEN R H, et al. Three-dimensional numerical study on the effect of sidewall crust thermal resistance on transient MCCI by improved MPS method[J]. Annals of Nuclear Energy, 2020, 144: 107525. doi: 10.1016/j.anucene.2020.107525
    [16] XIAO X K, CAI Q H, CHEN R H, et al. An improved MPS-DEM numerical model for fluid–solid coupling problem in nuclear reactor[J]. Nuclear Engineering and Design, 2022, 396: 111875. doi: 10.1016/j.nucengdes.2022.111875
    [17] DING W, XIAO X K, CAI Q H, et al. Numerical investigation of fluid–solid interaction during debris bed formation based on MPS-DEM[J]. Annals of Nuclear Energy, 2022, 175: 109244. doi: 10.1016/j.anucene.2022.109244
  • 加载中
图(9)
计量
  • 文章访问数:  1967
  • HTML全文浏览量:  59
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-13
  • 修回日期:  2022-08-30
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回