Structure Design and Performance Analysis of 90Sr Radioisotope Thermoelectric Generator
-
摘要: 本研究设计了90Sr同位素温差电源物理模型,主要包括热源、热电转换模块以及散热模块。在此基础上利用COMSOL软件对同位素电源进行有限元分析,得到了同位素电源的温度分布、电压以及功率输出特性。同时研究了热源功率衰减下的同位素电源输出特性,最后对热电材料的高度和横截面积进行了敏感性分析。研究结果表明,同位素电源最大输出功率为63.6 W,热电转换效率为7.6%,在15 a内电源最大输出功率由63.6 W衰减至24.4 W。敏感性分析发现电源内阻和最大输出功率随热电材料高度的增大而增大,随横截面积的减小而增大,研究结果对同位素电源在太空、深海等恶劣环境中的应用具有重要意义。Abstract: In this paper, a physical model of 90Sr radioisotope thermoelectric generator was designed, including the heat source, thermoelectric conversion module and heat dissipation module. On this basis, the finite element analysis of generator was carried out by using the COMSOL, and the temperature distribution, voltage and power output characteristics of generator were obtained. Meanwhile, the output characteristics of generator under the attenuation of the heat source power were studied, and finally the sensitivity analysis of the height and cross-sectional area of the thermoelectric material was carried out. The research results show that the maximum output power of generator is 63.6 W, the thermoelectric conversion efficiency is 7.6%, and the maximum output power of generator is reduced from 63.6 W to 24.4 W within 15 years. Sensitivity analysis found that the internal resistance and maximum output power of generator increase with the increase of the height of the thermoelectric material, and decrease with the increase of the cross-sectional area. The research results are of great significance to the application of radioisotope thermoelectric generator in harsh environments such as space and deep sea.
-
-
[1] CATALDO R L, BENNETT G L. U. S. Space radioisotope power systems and applications: past, present and future[M]//SINGH N. Radioisotopes - Applications in Physical Sciences. London: InTech, 2011: 474. [2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. doi: 10.1126/science.1158899 [3] GHASEMI NEJAD G R, RAHMANI F, ABAEIANI G R. Design and optimization of beta-cell temperature sensor based on 63Ni–Si[J]. Applied Radiation and Isotopes, 2014, 86: 46-51. doi: 10.1016/j.apradiso.2013.12.027 [4] ROWE D M. Applications of nuclear-powered thermoelectric generators in space[J]. Applied Energy, 1991, 40(4): 241-271. doi: 10.1016/0306-2619(91)90020-X [5] SCHMIDT G R, SUTLIFF T J, DUDZINSKI L A. Radioisotope power: a key technology for deep space exploration[M]//SINGH N. Radioisotopes - Applications in Physical Sciences. London: InTech, 2011: 420-424. [6] GUSEV V V, PUSTOVALOV A A, RYBKIN N N, et al. Milliwatt-power radioisotope thermoelectric generator (RTG) based on Plutonium-238[J]. Journal of Electronic Materials, 2011, 40(5): 807-811. doi: 10.1007/s11664-011-1579-z [7] SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied Energy, 2017, 202: 736-745. doi: 10.1016/j.apenergy.2017.05.181 [8] XU Z H, LI J Q, TANG X B, et al. Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator[J]. Energy, 2020, 194: 116873. doi: 10.1016/j.energy.2019.116873 [9] KHAJEPOUR A, RAHMANI F. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL and MCNP[J]. Applied Radiation and Isotopes, 2017, 119: 51-59. doi: 10.1016/j.apradiso.2016.11.001 [10] LIU K, LIU Y P, XU Z H, et al. Experimental prototype and simulation optimization of micro-radial milliwatt-power radioisotope thermoelectric generator[J]. Applied Thermal Engineering, 2017, 125: 425-431. doi: 10.1016/j.applthermaleng.2017.07.022 [11] DENG W, WANG X J, PAN X D, et al. Geometry design and performance optimization of a terrestrial radioisotope thermoelectric generator based on finite element analysis[J]. Annals of Nuclear Energy, 2021, 151: 107883. doi: 10.1016/j.anucene.2020.107883 [12] 高俊岭. 大功率热电转换关键技术及测试方法研究[D]. 广州: 华南理工大学, 2015.