高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

90Sr同位素温差电源结构设计与性能分析

杜广瀚 李玉鹏 李根 郭锐 刘桂秀 王进仕

杜广瀚, 李玉鹏, 李根, 郭锐, 刘桂秀, 王进仕. 90Sr同位素温差电源结构设计与性能分析[J]. 核动力工程, 2023, 44(3): 104-111. doi: 10.13832/j.jnpe.2023.03.0104
引用本文: 杜广瀚, 李玉鹏, 李根, 郭锐, 刘桂秀, 王进仕. 90Sr同位素温差电源结构设计与性能分析[J]. 核动力工程, 2023, 44(3): 104-111. doi: 10.13832/j.jnpe.2023.03.0104
Du Guanghan, Li Yupeng, Li Gen, Guo Rui, Liu Guixiu, Wang Jinshi. Structure Design and Performance Analysis of 90Sr Radioisotope Thermoelectric Generator[J]. Nuclear Power Engineering, 2023, 44(3): 104-111. doi: 10.13832/j.jnpe.2023.03.0104
Citation: Du Guanghan, Li Yupeng, Li Gen, Guo Rui, Liu Guixiu, Wang Jinshi. Structure Design and Performance Analysis of 90Sr Radioisotope Thermoelectric Generator[J]. Nuclear Power Engineering, 2023, 44(3): 104-111. doi: 10.13832/j.jnpe.2023.03.0104

90Sr同位素温差电源结构设计与性能分析

doi: 10.13832/j.jnpe.2023.03.0104
基金项目: 国家重点研发计划(2019YFB1900704)
详细信息
    作者简介:

    杜广瀚(1997—),男,硕士研究生,主要从事空间核动力与新能源电力系统的研究,E-mail: 3120303026@stu.xjtu.edu.cn

    通讯作者:

    李 根,E-mail:genli@scut.edu.cn

  • 中图分类号: TM913;TL99

Structure Design and Performance Analysis of 90Sr Radioisotope Thermoelectric Generator

  • 摘要: 本研究设计了90Sr同位素温差电源物理模型,主要包括热源、热电转换模块以及散热模块。在此基础上利用COMSOL软件对同位素电源进行有限元分析,得到了同位素电源的温度分布、电压以及功率输出特性。同时研究了热源功率衰减下的同位素电源输出特性,最后对热电材料的高度和横截面积进行了敏感性分析。研究结果表明,同位素电源最大输出功率为63.6 W,热电转换效率为7.6%,在15 a内电源最大输出功率由63.6 W衰减至24.4 W。敏感性分析发现电源内阻和最大输出功率随热电材料高度的增大而增大,随横截面积的减小而增大,研究结果对同位素电源在太空、深海等恶劣环境中的应用具有重要意义。

     

  • 图  1  燃料芯块及包壳结构

    Figure  1.  Structure of Fuel Pellet and Cladding

    图  2  屏蔽层和保温层结构

    Figure  2.  Structure of Shielding Layer and Insulation Layer

    图  3  热电转换模块结构

    Figure  3.  Structure of Thermoelectric Conversion Module

    图  4  热电转换模块分块布置

    Figure  4.  Block Arrangement of Thermoelectric Conversion Module

    图  5  电路设计原理

    Figure  5.  Schematic Diagram of Circuit Design

    图  6  热电转换模块布置位置示意图

    Figure  6.  Layout Diagram of Thermoelectric Conversion Module      

    图  7  同位素电源结构图

    Figure  7.  Structure of Radioisotope Thermoelectric Generator

    图  8  电源径向温度分布

    Figure  8.  Radial Temperature Distribution of Generator

    图  9  热电转换模块轴向温度分布

    Figure  9.  Axial Temperature Distribution of Thermoelectric Conversion Module

    图  10  子模块1电势分布

    Figure  10.  Potential Distribution of Sub-module 1

    图  11  子模块1功率输出特性

    Figure  11.  Power Output Characteristics of Sub-module 1

    图  12  电源电压输出特性

    Figure  12.  Voltage Output Characteristics of Generator

    图  13  电源功率输出特性

    Figure  13.  Power Output Characteristics of Generator

    图  14  热源功率随时间的变化

    Figure  14.  Variation of Heat Source Power with Time

    图  15  不同时间时电源径向温度分布

    Figure  15.  Radial Temperature Distribution of Generator at Different Time

    图  16  不同时间时热电转换模块轴向温度分布

    Figure  16.  Axial Temperature Distribution of Thermoelectric Conversion Module at Different Time

    图  17  电源输出功率随着时间的变化特性

    Figure  17.  Variation Characteristics of Output Power of Generator with Time

    图  18  碲化铅不同高度时热电转换模块温度分布

    Figure  18.  Temperature Distribution of Thermoelectric Conversion Module at Different PbTe Heights

    图  19  碲化铅不同高度时电源输出功率特性

    Figure  19.  Output Power Characteristics of Generator at Different PbTe Heights

    图  20  碲化铅不同横截面积时发电模块温度分布

    Figure  20.  Temperature Distribution of Thermoelectric Generator Module under Different PbTe Cross-sectional Areas

    图  21  碲化铅不同横截面积时电源输出功率特性

    Figure  21.  Output Power Characteristics of Generator under Different PbTe Cross-sectional Areas

  • [1] CATALDO R L, BENNETT G L. U. S. Space radioisotope power systems and applications: past, present and future[M]//SINGH N. Radioisotopes - Applications in Physical Sciences. London: InTech, 2011: 474.
    [2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461. doi: 10.1126/science.1158899
    [3] GHASEMI NEJAD G R, RAHMANI F, ABAEIANI G R. Design and optimization of beta-cell temperature sensor based on 63Ni–Si[J]. Applied Radiation and Isotopes, 2014, 86: 46-51. doi: 10.1016/j.apradiso.2013.12.027
    [4] ROWE D M. Applications of nuclear-powered thermoelectric generators in space[J]. Applied Energy, 1991, 40(4): 241-271. doi: 10.1016/0306-2619(91)90020-X
    [5] SCHMIDT G R, SUTLIFF T J, DUDZINSKI L A. Radioisotope power: a key technology for deep space exploration[M]//SINGH N. Radioisotopes - Applications in Physical Sciences. London: InTech, 2011: 420-424.
    [6] GUSEV V V, PUSTOVALOV A A, RYBKIN N N, et al. Milliwatt-power radioisotope thermoelectric generator (RTG) based on Plutonium-238[J]. Journal of Electronic Materials, 2011, 40(5): 807-811. doi: 10.1007/s11664-011-1579-z
    [7] SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Applied Energy, 2017, 202: 736-745. doi: 10.1016/j.apenergy.2017.05.181
    [8] XU Z H, LI J Q, TANG X B, et al. Electrodeposition preparation and optimization of fan-shaped miniaturized radioisotope thermoelectric generator[J]. Energy, 2020, 194: 116873. doi: 10.1016/j.energy.2019.116873
    [9] KHAJEPOUR A, RAHMANI F. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL and MCNP[J]. Applied Radiation and Isotopes, 2017, 119: 51-59. doi: 10.1016/j.apradiso.2016.11.001
    [10] LIU K, LIU Y P, XU Z H, et al. Experimental prototype and simulation optimization of micro-radial milliwatt-power radioisotope thermoelectric generator[J]. Applied Thermal Engineering, 2017, 125: 425-431. doi: 10.1016/j.applthermaleng.2017.07.022
    [11] DENG W, WANG X J, PAN X D, et al. Geometry design and performance optimization of a terrestrial radioisotope thermoelectric generator based on finite element analysis[J]. Annals of Nuclear Energy, 2021, 151: 107883. doi: 10.1016/j.anucene.2020.107883
    [12] 高俊岭. 大功率热电转换关键技术及测试方法研究[D]. 广州: 华南理工大学, 2015.
  • 加载中
图(21)
计量
  • 文章访问数:  1499
  • HTML全文浏览量:  109
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-07-02
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回