[1] |
U. S. NRC. RELAP5/MOD3.3 code manual Vol. 1: Code structure, system models, and solution methods. Nuclear safety analysis division Office of Nuclear Regulatory Research U. S. Nuclear Regulatory Commission: RELAP5/MOD3.3 Code Manual: NUREG/CR-5535[R]. Rockville: Information Systems Laboratories, Inc. , 2001.
|
[2] |
TRACE. TRACE V5.0 Theory Manual[Z]. U. S.: Nuclear Regulatory Commission, 2010.
|
[3] |
SEKOGUCHI K, INOUE K, IMASAKI T. Void signal analysis and gas-liquid two-phase flow regime determination by a statistical pattern recognition method: fluids engineering[J]. JSME International Journal, 1987, 30(266): 1266-1273. doi: 10.1299/jsme1987.30.1266
|
[4] |
MI Y, ISHII M, TSOUKALAS L H. Flow regime identification methodology with neural networks and two-phase flow models[J]. Nuclear Engineering and Design, 2001, 204(1-3): 87-100. doi: 10.1016/S0029-5493(00)00325-3
|
[5] |
孙斌,周云龙. 基于支持向量机和小波包能量特征的气液两相流流型识别方法[J]. 中国电机工程学报,2005, 25(17): 93-99. doi: 10.3321/j.issn:0258-8013.2005.17.019
|
[6] |
孙斌,周云龙,赵鹏,等. 基于奇异值分解和最小二乘支持向量机的气-液两相流流型识别方法[J]. 核动力工程,2007, 28(6): 62-66. doi: 10.3969/j.issn.0258-0926.2007.06.015
|
[7] |
乔守旭,钟文义,谭思超,等. 基于PCA-GA-SVM的竖直下降两相流流型预测[J]. 核动力工程,2022, 43(3): 85-93. doi: 10.13832/j.jnpe.2022.03.0085
|
[8] |
OOI Z J, ZHU L X, BOTTINI J L, et al. Identification of flow regimes in boiling flows in a vertical annulus channel with machine learning techniques[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122439. doi: 10.1016/j.ijheatmasstransfer.2021.122439
|
[9] |
BOTTINI J L, ZHU L X, OOI Z J, et al. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119712.
|
[10] |
LEE J Y, ISHII M, KIM N S. Instantaneous and objective flow regime identification method for the vertical upward and downward co-current two-phase flow[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14): 3442-3459. doi: 10.1016/j.ijheatmasstransfer.2007.10.037
|
[11] |
KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480. doi: 10.1109/5.58325
|
[12] |
CONG T L, SU G H, QIU S Z, et al. Applications of ANNs in flow and heat transfer problems in nuclear engineering: A review work[J]. Progress in Nuclear Energy, 2013, 62: 54-71. doi: 10.1016/j.pnucene.2012.09.003
|
[13] |
JULIÁ J E, LIU Y, PARANJAPE S, et al. Upward vertical two-phase flow local flow regime identification using neural network techniques[J]. Nuclear Engineering and Design, 2008, 238(1): 156-169. doi: 10.1016/j.nucengdes.2007.05.005
|
[14] |
HERNÁNDEZ L, JULIÁ J E, CHIVA S, et al. Fast classification of two-phase flow regimes based on conductivity signals and artificial neural networks[J]. Measurement Science and Technology, 2006, 17(6): 1511-1521. doi: 10.1088/0957-0233/17/6/032
|
[15] |
MISHIMA K, ISHII M. Flow regime transition criteria for upward two-phase flow in vertical tubes[J]. International Journal of Heat and Mass Transfer, 1984, 27(5): 723-737. doi: 10.1016/0017-9310(84)90142-X
|
[16] |
KELESSIDIS V C, DUKLER A E. Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli[J]. International Journal of Multiphase Flow, 1989, 15(2): 173-191. doi: 10.1016/0301-9322(89)90069-4
|
[17] |
DAS G, DAS P K, PUROHIT N K, et al. Flow pattern transition during gas liquid upflow through vertical concentric annuli—Part I: experimental investigations[J]. Journal of Fluids Engineering, 1999, 121(4): 895-901. doi: 10.1115/1.2823552
|
[18] |
WU B, FIROUZI M, MITCHELL T, et al. A critical review of flow maps for gas-liquid flows in vertical pipes and annuli[J]. Chemical Engineering Journal, 2017, 326: 350-377. doi: 10.1016/j.cej.2017.05.135
|
[19] |
OZAR B, JEONG J J, DIXIT A, et al. Flow structure of gas–liquid two-phase flow in an annulus[J]. Chemical Engineering Science, 2008, 63(15): 3998-4011. doi: 10.1016/j.ces.2008.04.042
|