高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压水堆大修下行工况冷却剂主要辐解产物计算研究

李富海 林蕴良 林子健 林根仙 郭子方 方军 林铭章

李富海, 林蕴良, 林子健, 林根仙, 郭子方, 方军, 林铭章. 压水堆大修下行工况冷却剂主要辐解产物计算研究[J]. 核动力工程, 2023, 44(3): 202-209. doi: 10.13832/j.jnpe.2023.03.0202
引用本文: 李富海, 林蕴良, 林子健, 林根仙, 郭子方, 方军, 林铭章. 压水堆大修下行工况冷却剂主要辐解产物计算研究[J]. 核动力工程, 2023, 44(3): 202-209. doi: 10.13832/j.jnpe.2023.03.0202
Li Fuhai, Lin Yunliang, Lin Zijian, Lin Genxian, Guo Zifang, Fang Jun, Lin Mingzhang. Research on Calculation of Coolant Radiolysis Products in Operating Conditions during the Shutdown of PWRs[J]. Nuclear Power Engineering, 2023, 44(3): 202-209. doi: 10.13832/j.jnpe.2023.03.0202
Citation: Li Fuhai, Lin Yunliang, Lin Zijian, Lin Genxian, Guo Zifang, Fang Jun, Lin Mingzhang. Research on Calculation of Coolant Radiolysis Products in Operating Conditions during the Shutdown of PWRs[J]. Nuclear Power Engineering, 2023, 44(3): 202-209. doi: 10.13832/j.jnpe.2023.03.0202

压水堆大修下行工况冷却剂主要辐解产物计算研究

doi: 10.13832/j.jnpe.2023.03.0202
详细信息
    作者简介:

    李富海(1991—),男,高级工程师,现从事反应堆一回路化学研究工作,E-mail: 530875205@qq.com

  • 中图分类号: TM623.7;TL77

Research on Calculation of Coolant Radiolysis Products in Operating Conditions during the Shutdown of PWRs

  • 摘要: 压水堆大修时活化腐蚀产物源项控制是降低集体剂量最有力的手段,冷却剂辐解的影响必须予以考虑。本文基于水辐解反应动力学原理,构建了冷却剂辐解动力学模型,根据该模型计算得到了主要辐解产物H2O2、O2和H2在各工况的生成情况,并讨论了微观反应机理。结果表明:①在停堆下行过程中,冷却剂温度从310℃逐步下降到60℃,溶解氢浓度逐步降为0,一回路从还原性转为氧化性,H2O2和O2的生成显著上升;②温度、B/Li浓度、溶解氢浓度、H2O2和O2初始浓度等多种因素均会影响辐解产物的浓度;③H2O2和O2是相互促进生成的关系,H2可以显著抑制H2O2和O2的生成,但高浓度的H2O2会保护H2免遭·OH的消耗。本文研究结果将为压水堆大修下行工况参数的选择以及活化腐蚀产物源项控制提供参考和指导。

     

  • 图  1  310℃时不同条件下辐解产物随时间的变化(CB=100 mg/kg,CLi=0.6 mg/kg)

    Figure  1.  Variation of Radiolysis Products with Time under Different Conditions at 310℃ (CB=100 mg/kg, CLi=0.6 mg/kg)

    图  2  291℃时不同条件下辐解产物随时间的变化(CB=1200 mg/kg,$ {C_{{{\text{O}}_2}}} $=5 μg/kg)

    Figure  2.  Variation of Radiolysis Products with Time under Different Conditions at 291℃(CB=1200 mg/kg, $ {C_{{{\text{O}}_2}}} $=5 μg/kg)

    图  3  177℃时不同条件下辐解产物随时间的变化

    Figure  3.  Variation of Radiolysis Products with Time under Different Conditions at 177℃

    图  4  130℃时不同条件下辐解产物随时间的变化

    Figure  4.  Variation of Radiolysis Products with Time under Different Conditions at 130℃

    图  5  不同H2O2初始浓度下辐解产物随时间的变化(CB=2350 mg/kg,CLi=0.05 mg/kg,T=70℃,$ {C_{{{\text{O}}_2}}} $=8 mg/kg)

    Figure  5.  Variation of Radiolysis Products with Time under Different Initial Concentrations of H2O2 (CB=2350 mg/kg, CLi=0.05 mg/kg, T=70℃, $ {C_{{{\text{O}}_2}}} $=8 mg/kg)

    图  6  不同温度下辐解产物随时间的变化(CB=2350 mg/kg,CLi=0.05 mg/kg,$ {C_{{{\text{O}}_2}}} $=8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $=10 mg/kg)

    Figure  6.  Variation of Radiolysis Products with Time at Different Temperatures (CB=2350 mg/kg, CLi=0.05 mg/kg, $ {C_{{{\text{O}}_2}}} $=8 mg/kg, $ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $=10 mg/kg)

    图  7  不同CLi下辐解产物随时间的变化(CB=2350 mg/kg,T=70℃,$ {C_{{{\text{O}}_2}}} $=8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $=10 mg/kg)

    Figure  7.  Variation of Radiolysis Products with Time under Different Concentrations of Li (CB=2350 mg/kg, T=70℃, $ {C_{{{\text{O}}_2}}} $=8 mg/kg, $ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $=10 mg/kg)

    图  8  压水堆大修下行各工况下辐解产物H2O2、O2和H2的平衡浓度

    Figure  8.  Equilibrium Concentration of Radiolysis Products (H2O2, O2, H2) under Different Operating Conditions during the Shutdown of a PWR

    表  1  某压水堆大修下行工况参数表

    Table  1.   Table of Parameters under Different Operating Conditions during the Shutdown of a PWR

    序号工况描述温度(T)/
    压力/
    MPa
    硼浓度(CB)/
    (mg·kg−1)
    锂浓度(CLi)/
    (mg·kg−1)
    溶解氢浓度(${C}_{ {\text{H} }_{\tiny {2} } }'$)/
    (cm3·kg−1)
    氧气浓度(${C}_{ {\text{O} }_{\tiny{2} } }$)/
    ( μg·kg−1)
    1降功率前48~24 h31015.71通常在100左右0.6010~355
    2降功率前24 h105
    3热停平台29115.7112000.20105
    0.60
    3.30
    4中停平台-1
    碱性还原方案
    1772.742000~2400<0.0555
    0.50
    1
    2.07~2.70
    5中停平台-21302.742200~2400<0.0555
    0.50
    1.65
    6氧化运行60~802.7423500.05~1.3000~104(添加0~20 mg/kg H2O2
      注:①${C}_{{\text{H}}_{\text{2}}}' $指的是冷却剂中注氢后达到的溶解氢浓度;②1 μg/kg=0.03125 mol/L
    下载: 导出CSV

    表  2  H3BO3、LiOH和 H2O解离反应与解离平衡常数

    Table  2.   Dissociation Reaction and Equilibrium Constants of H3BO3, LiOH and H2O

    序号反应式平衡常数(K
    1B(OH)3 + OH $\rightleftharpoons $ B(OH)4K1 = −1573.21/T − 28.8397 − 0.011748×T + 13.2258×lgT
    22B(OH)3 + OH $\rightleftharpoons $ B2(OH)7K2 = −2756.10/T + 18.9660 − 5.835×lgT
    33B(OH)3 + OH $\rightleftharpoons $ B3(OH)10K3 = −3339.50/T + 8.08400 − 1.497×lgT
    44B(OH)3 + 2OH $\rightleftharpoons $ B4(OH)142−K4 = −12820.0/T + 134.560 − 42.105×lgT
    55B(OH)3 + 3OH $\rightleftharpoons $ B5(OH)183−K5= −14099.0/T + 118.115 − 36.237×lgT
    6LiOH $\rightleftharpoons $ Li+ + OHK6 = −1.655×10−9×T 3 +4.24×10−7×T 2+1.62×10−3×T+0.1631
    7Li+ + B(OH)4 $\rightleftharpoons $ LiB(OH)4K7 = 2.12
    8H2O $\rightleftharpoons $ H+ + OHK8 = −[−4.098 − 3245/T + 2.23×105/T 2 − 3.998×107/T 3 + (13.95 − 1262.3/T + 8.56×105/T 2) ×lgρ]
      ρ—密度
    下载: 导出CSV

    表  3  停堆1 d时堆芯的剩余剂量率

    Table  3.   Calculated Reactor Core Residual Dose Rate 1 Day after Shutdown

    类别中子次级γγ
    剂量率/(Gy·h−12.02×10−22.91×10−31.20×105
    下载: 导出CSV

    表  4  压水堆大修下行工况冷却剂pH值计算结果

    Table  4.   Calculation Results of Coolant pH Value under Different Operating Conditions during the Shutdown of a PWR

    T/℃纯水pH值CB/ (mg·kg−1)CLi/ (mg·kg−1)pH值
    3105.751000.607.24
    2915.6712000.200.603.305.836.287.01
    1775.7120000.050.5012.072.704.845.395.675.986.09
    5.7124000.050.5012.072.704.775.275.555.855.97
    1305.9222000.050.501.654.735.225.71
    5.9224000.050.501.654.705.165.64
    806.3123500.051.304.645.44
    706.4123500.051.304.635.42
    606.5223500.051.304.625.40
    下载: 导出CSV
  • [1] 杨茂春,陈德淦. 大亚湾核电站大修中职业照射控制的实践与经验[J]. 辐射防护,2004, 24(3-4): 144-154.
    [2] 顾景智,杨茂春,陈德淦,等. 大亚湾核电站辐射源项控制的实践[J]. 辐射防护,2004, 24(3-4): 227-232.
    [3] 范柄辰. 压水堆核电站一回路主要活化腐蚀产物及水化学控制措施[J]. 中国核电,2020, 13(3): 356-362,370.
    [4] BELLONI J, MOSTAFAVI M, DOUKI T, et al. Radiation Chemistry: From basics to applications in material and life sciences[M]. Les Ulis: EDP Sciences, 2008: 4-6.
    [5] SAJI G. A review of root causes of SCC phenomena in BWR/RBMK: issues, approaches, and proposals[C]//12th International Conference on Nuclear Engineering. Arlington: ICONE, 2004: 93-103.
    [6] NISHIZAWA E. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants[C]//Proceedings of the Third International Workshop on the Implementation of ALARA at Nuclear Power Plants. Washington: US Nuclear Regulatory Commission, 1995.
    [7] MORILLON A M. Modelling of radionuclide transport in a simulated PWR environment[D]. Cambridge: Massachusetts Institute of Technology, 1987.
    [8] BENDAOUD R, TOUSSAINT Y, NAPOLI A. PACTOLE: a methodology and a system for semi-automatically enriching an ontology from a collection of texts[C]//16th International Conference on Conceptual Structures. Toulouse: Springer, 2008: 203-216.
    [9] 王晓东,张竞宇,陈义学,等. 水辐解对反应堆材料SS316腐蚀速率的影响研究[J]. 核技术,2020, 43(8): 11-16.
    [10] JAISWAL A. A numerical study on parameters affecting boric acid transport and chemistry within fuel corrosion deposits during crud induced power shift[D]. Illinois: University of Illinois at Urbana-Champaign, 2013.
    [11] KIM H S. A study for modeling electrochemistry in light water reactors[D]. Pennsylvania: Pennsylvania State University, 2007.
    [12] MESMER R E, BAES C F, SWEETON F H. Acidity measurements at elevated temperatures. VI. Boric acid equilibriums[J]. Inorganic Chemistry, 1972, 11(3): 537-543. doi: 10.1021/ic50109a023
    [13] WANG P M, KOSINSKI J J, LENCKA M M, et al. Thermodynamic modeling of boric acid and selected metal borate systems[J]. Pure and Applied Chemistry, 2013, 85(11): 2117-2144. doi: 10.1351/pac-con-12-07-09
    [14] ELLIOT A J, BARTELS D M, STUART C R, et al. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20℃ to 350℃ based on information available in 2008: 153-127160-450-001[R]. Mississauga: Atomic Energy of Canada Limited, 2009: 3-19.
    [15] WANG M. Irradiated assisted corrosion of stainless steel in light water reactors - Focus on radiolysis and corrosion damage[Z]. Palaiseau: Laboratoire des Solides Irradiés, 2013.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  243
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2023-04-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回