Research on Calculation of Coolant Radiolysis Products in Operating Conditions during the Shutdown of PWRs
-
摘要: 压水堆大修时活化腐蚀产物源项控制是降低集体剂量最有力的手段,冷却剂辐解的影响必须予以考虑。本文基于水辐解反应动力学原理,构建了冷却剂辐解动力学模型,根据该模型计算得到了主要辐解产物H2O2、O2和H2在各工况的生成情况,并讨论了微观反应机理。结果表明:①在停堆下行过程中,冷却剂温度从310℃逐步下降到60℃,溶解氢浓度逐步降为0,一回路从还原性转为氧化性,H2O2和O2的生成显著上升;②温度、B/Li浓度、溶解氢浓度、H2O2和O2初始浓度等多种因素均会影响辐解产物的浓度;③H2O2和O2是相互促进生成的关系,H2可以显著抑制H2O2和O2的生成,但高浓度的H2O2会保护H2免遭·OH的消耗。本文研究结果将为压水堆大修下行工况参数的选择以及活化腐蚀产物源项控制提供参考和指导。Abstract: The control of radioactive source of the activated corrosion products during the shutdown of PWRs is one of the most effective means to reduce the CRE. The effect of coolant radiolysis should be taken into account. In this paper, a coolant radiolysis kinetic model was developed based on water radiolysis reaction kinetics. The main radiolysis products such as H2O2, O2 and H2 under different conditions were obtained through the kinetic calculations. The reaction mechanism was also discussed. The results showed that: ① during the shutdown, as the temperature of coolant decreases from 310℃ to 60℃, and the concentration of dissolved H2 decreased to 0, the coolant changes from reductive to oxidative. The radiolysis generation of H2O2 and O2 is significantly promoted;② the generation of radiolysis products is affected by the chemical parameters, such as concentrations of B/Li, dissolved H2, dissolved O2 and H2O2; ③ the generation of H2O2 and O2 are mutually promoted by each other. The presence of H2 can inhibit the generation of H2O2 and O2 to some extent. The presence of high concentration of H2O2 will protect H2 from the consumption of ·OH. The results in this paper may provide important references and guidances for the selection of operating parameters under different conditions during the shutdown of PWRs and the control of activated corrosion products.
-
Key words:
- PWR /
- Shutdown /
- Coolant /
- Radiolysis products
-
图 6 不同温度下辐解产物随时间的变化(CB=2350 mg/kg,CLi=0.05 mg/kg,
$ {C_{{{\text{O}}_2}}} $ =8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $ =10 mg/kg)Figure 6. Variation of Radiolysis Products with Time at Different Temperatures (CB=2350 mg/kg, CLi=0.05 mg/kg,
$ {C_{{{\text{O}}_2}}} $ =8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $ =10 mg/kg)图 7 不同CLi下辐解产物随时间的变化(CB=2350 mg/kg,T=70℃,
$ {C_{{{\text{O}}_2}}} $ =8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $ =10 mg/kg)Figure 7. Variation of Radiolysis Products with Time under Different Concentrations of Li (CB=2350 mg/kg, T=70℃,
$ {C_{{{\text{O}}_2}}} $ =8 mg/kg,$ {C_{{{\text{H}}_{\text{2}}}{{\text{O}}_2}}} $ =10 mg/kg)表 1 某压水堆大修下行工况参数表
Table 1. Table of Parameters under Different Operating Conditions during the Shutdown of a PWR
序号 工况描述 温度(T)/
℃压力/
MPa硼浓度(CB)/
(mg·kg−1)锂浓度(CLi)/
(mg·kg−1)溶解氢浓度(${C}_{ {\text{H} }_{\tiny {2} } }'$)①/
(cm3·kg−1)氧气浓度(${C}_{ {\text{O} }_{\tiny{2} } }$)/
( μg·kg−1)②1 降功率前48~24 h 310 15.71 通常在100左右 0.60 10~35 5 2 降功率前24 h 10 5 3 热停平台 291 15.71 1200 0.20 10 5 0.60 3.30 4 中停平台-1
碱性还原方案177 2.74 2000~2400 <0.05 5 5 0.50 1 2.07~2.70 5 中停平台-2 130 2.74 2200~2400 <0.05 5 5 0.50 1.65 6 氧化运行 60~80 2.74 2350 0.05~1.30 0 0~104(添加0~20 mg/kg H2O2) 注:①${C}_{{\text{H}}_{\text{2}}}' $指的是冷却剂中注氢后达到的溶解氢浓度;②1 μg/kg=0.03125 mol/L 表 2 H3BO3、LiOH和 H2O解离反应与解离平衡常数
Table 2. Dissociation Reaction and Equilibrium Constants of H3BO3, LiOH and H2O
序号 反应式 平衡常数(K) 1 B(OH)3 + OH− $\rightleftharpoons $ B(OH)4− K1 = −1573.21/T − 28.8397 − 0.011748×T + 13.2258×lgT 2 2B(OH)3 + OH− $\rightleftharpoons $ B2(OH)7− K2 = −2756.10/T + 18.9660 − 5.835×lgT 3 3B(OH)3 + OH− $\rightleftharpoons $ B3(OH)10− K3 = −3339.50/T + 8.08400 − 1.497×lgT 4 4B(OH)3 + 2OH− $\rightleftharpoons $ B4(OH)142− K4 = −12820.0/T + 134.560 − 42.105×lgT 5 5B(OH)3 + 3OH− $\rightleftharpoons $ B5(OH)183− K5= −14099.0/T + 118.115 − 36.237×lgT 6 LiOH $\rightleftharpoons $ Li+ + OH− K6 = −1.655×10−9×T 3 +4.24×10−7×T 2+1.62×10−3×T+0.1631 7 Li+ + B(OH)4− $\rightleftharpoons $ LiB(OH)4 K7 = 2.12 8 H2O $\rightleftharpoons $ H+ + OH− K8 = −[−4.098 − 3245/T + 2.23×105/T 2 − 3.998×107/T 3 + (13.95 − 1262.3/T + 8.56×105/T 2) ×lgρ] ρ—密度 表 3 停堆1 d时堆芯的剩余剂量率
Table 3. Calculated Reactor Core Residual Dose Rate 1 Day after Shutdown
类别 中子 次级γ γ 剂量率/(Gy·h−1) 2.02×10−2 2.91×10−3 1.20×105 表 4 压水堆大修下行工况冷却剂pH值计算结果
Table 4. Calculation Results of Coolant pH Value under Different Operating Conditions during the Shutdown of a PWR
T/℃ 纯水pH值 CB/ (mg·kg−1) CLi/ (mg·kg−1) pH值 310 5.75 100 0.60 7.24 291 5.67 1200 0.20 0.60 3.30 5.83 6.28 7.01 177 5.71 2000 0.05 0.50 1 2.07 2.70 4.84 5.39 5.67 5.98 6.09 5.71 2400 0.05 0.50 1 2.07 2.70 4.77 5.27 5.55 5.85 5.97 130 5.92 2200 0.05 0.50 1.65 4.73 5.22 5.71 5.92 2400 0.05 0.50 1.65 4.70 5.16 5.64 80 6.31 2350 0.05 1.30 4.64 5.44 70 6.41 2350 0.05 1.30 4.63 5.42 60 6.52 2350 0.05 1.30 4.62 5.40 -
[1] 杨茂春,陈德淦. 大亚湾核电站大修中职业照射控制的实践与经验[J]. 辐射防护,2004, 24(3-4): 144-154. [2] 顾景智,杨茂春,陈德淦,等. 大亚湾核电站辐射源项控制的实践[J]. 辐射防护,2004, 24(3-4): 227-232. [3] 范柄辰. 压水堆核电站一回路主要活化腐蚀产物及水化学控制措施[J]. 中国核电,2020, 13(3): 356-362,370. [4] BELLONI J, MOSTAFAVI M, DOUKI T, et al. Radiation Chemistry: From basics to applications in material and life sciences[M]. Les Ulis: EDP Sciences, 2008: 4-6. [5] SAJI G. A review of root causes of SCC phenomena in BWR/RBMK: issues, approaches, and proposals[C]//12th International Conference on Nuclear Engineering. Arlington: ICONE, 2004: 93-103. [6] NISHIZAWA E. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants[C]//Proceedings of the Third International Workshop on the Implementation of ALARA at Nuclear Power Plants. Washington: US Nuclear Regulatory Commission, 1995. [7] MORILLON A M. Modelling of radionuclide transport in a simulated PWR environment[D]. Cambridge: Massachusetts Institute of Technology, 1987. [8] BENDAOUD R, TOUSSAINT Y, NAPOLI A. PACTOLE: a methodology and a system for semi-automatically enriching an ontology from a collection of texts[C]//16th International Conference on Conceptual Structures. Toulouse: Springer, 2008: 203-216. [9] 王晓东,张竞宇,陈义学,等. 水辐解对反应堆材料SS316腐蚀速率的影响研究[J]. 核技术,2020, 43(8): 11-16. [10] JAISWAL A. A numerical study on parameters affecting boric acid transport and chemistry within fuel corrosion deposits during crud induced power shift[D]. Illinois: University of Illinois at Urbana-Champaign, 2013. [11] KIM H S. A study for modeling electrochemistry in light water reactors[D]. Pennsylvania: Pennsylvania State University, 2007. [12] MESMER R E, BAES C F, SWEETON F H. Acidity measurements at elevated temperatures. VI. Boric acid equilibriums[J]. Inorganic Chemistry, 1972, 11(3): 537-543. doi: 10.1021/ic50109a023 [13] WANG P M, KOSINSKI J J, LENCKA M M, et al. Thermodynamic modeling of boric acid and selected metal borate systems[J]. Pure and Applied Chemistry, 2013, 85(11): 2117-2144. doi: 10.1351/pac-con-12-07-09 [14] ELLIOT A J, BARTELS D M, STUART C R, et al. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20℃ to 350℃ based on information available in 2008: 153-127160-450-001[R]. Mississauga: Atomic Energy of Canada Limited, 2009: 3-19. [15] WANG M. Irradiated assisted corrosion of stainless steel in light water reactors - Focus on radiolysis and corrosion damage[Z]. Palaiseau: Laboratoire des Solides Irradiés, 2013.