高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于孪生模型的堆芯自给能中子探测器信号异常检测

陈静 卢燕臻 江灏 林蔚青 许勇

陈静, 卢燕臻, 江灏, 林蔚青, 许勇. 基于孪生模型的堆芯自给能中子探测器信号异常检测[J]. 核动力工程, 2023, 44(3): 210-216. doi: 10.13832/j.jnpe.2023.03.0210
引用本文: 陈静, 卢燕臻, 江灏, 林蔚青, 许勇. 基于孪生模型的堆芯自给能中子探测器信号异常检测[J]. 核动力工程, 2023, 44(3): 210-216. doi: 10.13832/j.jnpe.2023.03.0210
Chen Jing, Lu Yanzhen, Jiang Hao, Lin Weiqing, Xu Yong. Anomaly Detection of Core Self-Powered Neutron Detector Based on Twin Model[J]. Nuclear Power Engineering, 2023, 44(3): 210-216. doi: 10.13832/j.jnpe.2023.03.0210
Citation: Chen Jing, Lu Yanzhen, Jiang Hao, Lin Weiqing, Xu Yong. Anomaly Detection of Core Self-Powered Neutron Detector Based on Twin Model[J]. Nuclear Power Engineering, 2023, 44(3): 210-216. doi: 10.13832/j.jnpe.2023.03.0210

基于孪生模型的堆芯自给能中子探测器信号异常检测

doi: 10.13832/j.jnpe.2023.03.0210
基金项目: 福建省高校产学合作项目(2022H61010006)
详细信息
    作者简介:

    陈 静(1988—),女,副教授,现从事智能电器与设备故障检测的研究,E-mail: chenj@fzu.edu.cn

    通讯作者:

    江 灏,E-mail: jiangh@fzu.edu.cn

  • 中图分类号: TL81;TM623.7

Anomaly Detection of Core Self-Powered Neutron Detector Based on Twin Model

  • 摘要: 堆芯自给能中子探测器(SPND)的健康状态直接影响反应堆安全运行。充分考虑核反应堆内不同位置SPND间的量测关联性,提出一种基于孪生模型的堆芯SPND信号异常检测方法,利用SPND运行状态历史数据,通过随机森林回归算法(RFR)提取邻域SPND的量测信号特征,为SPND构建与其物理实体一致输出的孪生模型。孪生模型与探测器实体共生运行,通过计算探测器观测值与孪生模型估计值之间的残差,作为SPND信号异常检测判据,以此实现对单点和多点异常SPND的辨识和定位。实验表明,本文所提孪生模型的预测误差在1×10−11量级,具备极高的输出一致性。针对多种不同SPND信号异常状态,能够获得99%以上的辨识精度,准确地判别单点及多点异常SPND,对于提高堆芯中子注量率测量系统状态监测的可靠性和安全性具有较高的参考价值。

     

  • 图  1  SPND组成结构

    Figure  1.  SPND Structure

    图  2  SPND 信号异常检测流程图

    Figure  2.  Flow Chart of Anomaly Detection of SPND Signals

    图  3  U1(A)关系网络

    Figure  3.  Relationship Network of U1(A)

    图  4  停机期间SPND电流变化

    Figure  4.  Change of SPND Current During Shutdown

    图  5  单点异常检测结果

    Figure  5.  Single Point Anomaly Detection Results

    图  6  多点异常检测准确率

    Figure  6.  Multi-Point Anomaly Detection Accuracy

    表  1  数据模式划分结果

    Table  1.   Data Schema Partitioning Results

    多维特征变量标签变量
    (s1, s2, s3$, \cdots , $ sn−2 ,sn−1)sn
    (s1, s2, s3$, \cdots , $sn−2, sn)sn−1
    (s1,s2,s3$, \cdots , $sn−1,sn)sn−2
    $\cdots $$\cdots $
    (s2,s3,s4$, \cdots , $ sn−1,sn)s1
    下载: 导出CSV

    表  2  44 组回归模型 2 项参数最优选值

    Table  2.   Optimal Values of 2 Parameters in 44 Regression Models

    模型号 CART数量 最大特征数 模型号 CART数量 最大特征数
    1 14 12 23 11 16
    2 20 12 24 17 36
    3 10 31 25 10 34
    4 16 29 26 20 24
    5 19 36 27 17 16
    6 12 18 28 10 35
    7 10 28 29 12 34
    8 10 36 30 19 32
    9 17 32 31 10 20
    10 12 24 32 14 22
    11 11 36 33 15 26
    12 10 28 34 17 22
    13 11 14 35 15 16
    14 11 40 36 10 27
    15 11 33 37 15 20
    16 11 24 38 14 26
    17 12 25 39 14 29
    18 13 28 40 12 26
    19 12 20 41 15 38
    20 12 36 42 14 36
    21 15 14 43 13 20
    22 11 31 44 13 30
    下载: 导出CSV
  • [1] 李树成,胡铸萱. CAP 1400核电厂堆芯钒自给能中子探测器设计与验证[J]. 核电子学与探测技术,2018, 38(5): 699-702.
    [2] 黄有骏,李文平,杨戴博,等. 华龙一号堆芯中子注量率测量系统自给能中子探测器关键参数研究[J]. 核动力工程,2020, 41(S2): 45-49. doi: 10.13832/j.jnpe.2020.S2.0045
    [3] YELLAPU V S, TIWARI A P, DEGWEKER S B. Application of data reconciliation for fault detection and isolation of in-core self-powered neutron detectors using iterative principal component test[J]. Progress in Nuclear Energy, 2017, 100: 326-343. doi: 10.1016/j.pnucene.2017.04.017
    [4] GAUTAM S, TAMBOLI P K, ROY K, et al. Sensors incipient fault detection and isolation of nuclear power plant using extended Kalman filter and Kullback–Leibler divergence[J]. ISA Transactions, 2019, 92: 180-190. doi: 10.1016/j.isatra.2019.02.011
    [5] YELLAPU V S, ZHANG W D, VAJPAYEE V, et al. A multiscale data reconciliation approach for sensor fault detection[J]. Progress in Nuclear Energy, 2021, 135: 103707. doi: 10.1016/j.pnucene.2021.103707
    [6] CHATTERJEE S, SURWASE S K, BHUSHAN M, et al. Cluster statistics based normalization for online fault diagnosis of self-powered neutron detectors[C]//2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). Indore: IEEE, 2017: 1-6.
    [7] ZAREI M. A Kalman filtering of the Self-Powered Neutron Detector current to determine excess reactivity[J]. Radiation Physics and Chemistry, 2021, 188: 109602. doi: 10.1016/j.radphyschem.2021.109602
    [8] VOLODIN V S, TOLOKONSKII A O. Concept of instrumentation of digital twins of nuclear power plants units as observers for digital NPP I&C system[C]//8th International Conference on Mathematical Modeling in Physical Science. Bratislava: IOP, 2019: 012083.
    [9] KOCHUNAS B, HUAN X. Digital twin concepts with uncertainty for nuclear power applications[J]. Energies, 2021, 14(14): 4235. doi: 10.3390/en14144235
    [10] NGUYEN T N, PONCIROLI R, BRUCK P, et al. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring[J]. Annals of Nuclear Energy, 2022, 170: 109002. doi: 10.1016/j.anucene.2022.109002
    [11] 胡梦岩,孔繁丽,余大利,等. 数字孪生在先进核能领域中的关键技术与应用前瞻[J]. 电网技术,2021, 45(7): 2514-2522. doi: 10.13335/j.1000-3673.pst.2021.0335
    [12] AKS A,JSK B,LV B. Digital twin in energy industry: Proposed robust digital twin for power plant and other complex capital-intensive large engineering systems[J]. Energy Reports, 2022, 8: 3704-3726. doi: 10.1016/j.egyr.2022.02.305
    [13] LIN L Y, ATHE P, ROUXELIN P, et al. Digital-twin-based improvements to diagnosis, prognosis, strategy assessment, and discrepancy checking in a nearly autonomous management and control system[J]. Annals of Nuclear Energy, 2022, 166: 108715. doi: 10.1016/j.anucene.2021.108715
    [14] 刘皓璐,邵建伟,王雪,等. 基于数字孪生的配电自动化终端设备状态评价与故障预判[J]. 电网技术,2022, 46(4): 1605-1613. doi: 10.13335/j.1000-3673.pst.2021.0661
    [15] 张西宁,张雯雯,周融通,等. 采用单类随机森林的异常检测方法及应用[J]. 西安交通大学学报,2020, 54(2): 1-8,157.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  100
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-23
  • 修回日期:  2023-03-23
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回