高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨水溶液在γ场中的稳态辐射分解行为研究

郭子方 杨雨 林铭章 曹骐 汤嘉 林蕴良 林子健

郭子方, 杨雨, 林铭章, 曹骐, 汤嘉, 林蕴良, 林子健. 氨水溶液在γ场中的稳态辐射分解行为研究[J]. 核动力工程, 2023, 44(3): 217-222. doi: 10.13832/j.jnpe.2023.03.0217
引用本文: 郭子方, 杨雨, 林铭章, 曹骐, 汤嘉, 林蕴良, 林子健. 氨水溶液在γ场中的稳态辐射分解行为研究[J]. 核动力工程, 2023, 44(3): 217-222. doi: 10.13832/j.jnpe.2023.03.0217
Guo Zifang, Yang Yu, Lin Mingzhang, Cao Qi, Tang Jia, Lin Yunliang, Lin Zijian. Study on the Steady γ-Radiolysis of Ammonia Solution[J]. Nuclear Power Engineering, 2023, 44(3): 217-222. doi: 10.13832/j.jnpe.2023.03.0217
Citation: Guo Zifang, Yang Yu, Lin Mingzhang, Cao Qi, Tang Jia, Lin Yunliang, Lin Zijian. Study on the Steady γ-Radiolysis of Ammonia Solution[J]. Nuclear Power Engineering, 2023, 44(3): 217-222. doi: 10.13832/j.jnpe.2023.03.0217

氨水溶液在γ场中的稳态辐射分解行为研究

doi: 10.13832/j.jnpe.2023.03.0217
基金项目: 国家自然科学基金(11775214)
详细信息
    作者简介:

    郭子方(1995—),男,博士研究生,现主要从事水溶液辐射化学研究,E-mail: gzf1212@mail.ustc.edu.cn

    通讯作者:

    林铭章,E-mail: gelin@ustc.edu.cn

  • 中图分类号: TL99;O644

Study on the Steady γ-Radiolysis of Ammonia Solution

  • 摘要: 含氨冷却剂被应用于压水堆中,可以清除冷却剂辐射分解产生的O2、H2O2等氧化性产物,从而减轻结构材料腐蚀。本文研究了氨水在γ辐射场中的辐射分解行为,考察氨浓度、辐射吸收剂量和吸收剂量率、气液体积比和不同饱和气体对氨水辐射分解行为的影响,重点关注辐射分解产物H2O2和NO2的浓度变化。结果表明,随着体系中氨浓度的增加,H2O2的浓度受到明显抑制,NO2的浓度则呈现出上升趋势;吸收剂量的增加使得H2O2浓度明显升高,NO2的浓度则在吸收剂量为8 kGy时达到最大(> 100 μmol/L),而后降低;吸收剂量率的差异(2.78~25 Gy/min)并未导致H2O2和NO2浓度产生明显变化;氨水中的O2是NO2生成的关键,但O2过多会促进NO2氧化为NO3从而降低NO2浓度,此外O2的存在促进了H2O2的生成。本文研究结果可为后续含氨冷却剂体系的优化提供参考。

     

  • 图  1  氨浓度对H2O2和NO2浓度的影响

    Figure  1.  Concentrations of H2O2 and NO2 under Different Ammonia Concentrations

    图  2  吸收剂量对H2O2和NO2浓度的影响

    Figure  2.  Concentrations of H2O2 and NO2 under Different Absorbed Doses

    图  3  吸收剂量率对H2O2和NO2浓度的影响

    Figure  3.  Concentrations of H2O2 and NO2 under Different Absorbed Dose Rates

    图  4  气液体积比对H2O2和NO2浓度的影响

    Figure  4.  Concentrations of H2O2 and NO2 under Different Gas-liquid Volume Ratios

    图  5  不同饱和气体对H2O2和NO2浓度的影响

    Figure  5.  Concentrations of H2O2 and NO2 under Different Saturated Gases

  • [1] WREN J C. Steady-state radiolysis: effects of dissolved additives[M]. United States: ACS Publications, 2010: 271-295.
    [2] UCHIDA S, KATSUMURA Y. Water chemistry technology – one of the key technologies for safe and reliable nuclear power plant operation[J]. Journal of Nuclear Science and Technology, 2013, 50(4): 346-362. doi: 10.1080/00223131.2013.773171
    [3] ELLIOT A, BARTELS D. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20℃ to 350℃ based on information available in 2008: AECL-153-127160-450-001[R]. Canada: Atomic Energy of Canada Limited, 2009
    [4] DAUB K, ZHANG X, NOËL J J, et al. Effects of γ-radiation versus H2O2 on carbon steel corrosion[J]. Electrochimica Acta, 2010, 55(8): 2767-2776. doi: 10.1016/j.electacta.2009.12.028
    [5] BULANOV A V, KOLESOV B I, LUKASHENKO M L, et al. Radiolysis of ammonia in the first-loop coolant of reactors in floating power-generating units[J]. Atomic Energy, 2000, 88(5): 368-372. doi: 10.1007/BF02680531
    [6] HICKEL B, SEHESTED K. Reaction of hydroxyl radicals with ammonia in liquid water at elevated temperatures[J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1992, 39(4): 355-357. doi: 10.1016/1359-0197(92)90244-A
    [7] PAGSBERG P B. Investigation of the NH2 radical produced by pulse radiolysis of ammonia in aqueous solution: RISØ-256[R]. Denmark: Danish Atomic Energy Commission, 1972.
    [8] NETA P, MARUTHAMUTHU P, CARTON P M, et al. Formation and reactivity of the amino radical[J]. The Journal of Physical Chemistry, 1978, 82(17): 1875-1878. doi: 10.1021/j100506a004
    [9] LUZAKOV A V, BULANOV A V, VERKHOVSKAYA A O, et al. Radiation-chemical removal of corrosion hydrogen from VVER first-loop coolant[J]. Atomic Energy, 2008, 105(6): 402-407. doi: 10.1007/s10512-009-9115-4
    [10] RIGG T, SCHOLES G, WEISS J. 580. Chemical actions of ionising radiations in solutions. Part X. The action of X-rays on ammonia in aqueous solution[J]. Journal of the Chemical Society (Resumed), 1952: 3034-3038.
    [11] DWIBEDY P, KISHORE K, DEY G R, et al. Nitrite formation in the radiolysis of aerated aqueous solutions of ammonia[J]. Radiation Physics and Chemistry, 1996, 48(6): 743-747. doi: 10.1016/S0969-806X(96)00037-0
    [12] GHORMLEY J A. Warming curves for the condensed product of dissociated water vapor and for hydrogen peroxide glass[J]. Journal of the American Chemical Society, 1957, 79(8): 1862-1865. doi: 10.1021/ja01565a025
    [13] SHINN M B. Colorimetric method for determination of nitrate[J]. Industrial & Engineering Chemistry Analytical Edition, 1941, 13(1): 33-35.
    [14] LIU Z, FANG Z, WANG L, et al. Alpha radiolysis of nitric acid aqueous solution irradiated by 238Pu source[J]. Nuclear Science and Techniques, 2017, 28(4): 54. doi: 10.1007/s41365-017-0200-4
    [15] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in Aqueous Solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
    [16] 彭静, 郝燕, 魏根栓, 等. 辐射化学基础教程[M]. 北京: 北京大学出版社, 2015: 186-187.
    [17] STEINBERG M. Irradiation of NH3-H2O solutions for formation of hydrazine: BNL-613(T-183)[R]. United States: Brookhaven National Laboratory, 1960
    [18] BUXTON G V, DAINTON F S. Radical and molecular yields in the γ-radiolysis of water. II. The potassium iodide-nitrous oxide system in the pH range 0 to 14[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1965, 287(1411): 427-443.
    [19] SCHULER R H, PATTERSON L K, JANATA E. Yield for the scavenging of hydroxyl radicals in the radiolysis of nitrous oxide-saturated aqueous solutions[J]. Journal of Physical Chemistry, 1980, 84(16): 2088-2089. doi: 10.1021/j100453a020
  • 加载中
图(5)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  81
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-07-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回