Numerical Simulation of Flow Heat Transfer in Rectangular Channel under Local Deformation Condition
-
摘要: 反应堆中燃料元件所处的复杂工作环境会使燃料元件的性能发生变化以及出现几何状态偏离初始状态的情况,对流动和传热特性造成影响,威胁反应堆堆芯的安全性。本文采用ANSYS Workbench数值模拟平台,建立了包含三个固体域、四个冷却剂通道的模型,考虑固体域不同的弯曲情况,进行了稳态数值模拟。结果表明,不同弯曲情况下冷却剂流量在四个通道之间重新分配,从而影响固体域和流体域的温度分布,流通截面小的通道内冷却剂出口温度明显升高,固体域最高温度点由中心区域向流通面积减小的通道方向偏移。
-
关键词:
- 矩形通道 /
- 弯曲变形 /
- 计算流体动力学(CFD) /
- 共轭传热
Abstract: The complex working environment of the fuel elements in the reactor may cause changes in the performance of fuel elements and deviations from their initial geometric state, which can affect flow and heat transfer characteristics and threaten the safety of the reactor core. In this paper, the ANSYS Workbench numerical simulation platform was used to establish a model containing four coolant channels, and the steady-state numerical simulation was carried out considering different bending conditions in the solid domain. The results show that the coolant flow is redistributed among the four channels under different bending conditions, thus affecting the temperature in the channel with a small flow section area increases significantly, and the highest temperature point in the solid domain shifts from the central region to the channel with a reduced flow area. -
表 1 不同数量的网格单元数
Table 1. Number of Mesh Elements in Different Cases
工况 网格数量 工况1 238000 工况2 299880 工况3 567600 工况4 691200 工况5 848640 工况6 979200 表 2 正常工况下各通道质量流量分配
Table 2. Mass Flow Distribution of Each Channel under Normal Working Condition
通道 质量流量/( kg·s−1) 占比/% 通道1 1.685 24.7 通道2 1.726 25.3 通道3 1.726 25.3 通道4 1.684 24.7 -
[1] ADORNI M, BOUSBIA-SALAH A, HAMIDOUCHE T, et al. Analysis of partial and total flow blockage of a single fuel assembly of an MTR research reactor core[J]. Annals of Nuclear Energy, 2005, 32(15): 1679-1692. doi: 10.1016/j.anucene.2005.06.001 [2] LU Q, QIU S Z, SU G H. Flow blockage analysis of a channel in a typical material test reactor core[J]. Nuclear Engineering and Design, 2009, 239(1): 45-50. doi: 10.1016/j.nucengdes.2008.06.016 [3] 李金才,王平. COBRAⅢC/MIT-2程序的改进及其在高通量研究堆中的应用[J]. 核科学与工程,1996(1): 35-41. [4] SALAMA A. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal–hydraulic transients[J]. Annals of Nuclear Energy, 2011, 38(7): 1578-1592. doi: 10.1016/j.anucene.2011.03.005 [5] SALAMA A, EL-MORSHEDY S E D. CFD simulation of flow blockage through a coolant channel of a typical material testing reactor core[J]. Annals of Nuclear Energy, 2012, 41: 26-39. doi: 10.1016/j.anucene.2011.09.005 [6] SALAMA A, EL-AMIN M F, SUN S Y. Three-dimensional, numerical investigation of flow and heat transfer in rectangular channels subject to partial blockage[J]. Heat Transfer Engineering, 2015, 36(2): 152-165. doi: 10.1080/01457632.2014.909191 [7] 宋磊,郭赟,曾和义. 板状燃料组件入口堵流事故下流场和温度场的瞬态数值计算[J]. 核动力工程,2014, 35(3): 6-10. doi: 10.13832/j.jnpe.2014.03.0006 [8] 宋磊. 板状燃料组件堵流事故数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2013. [9] 董化平,樊文远,郭赟. 板状燃料组件流量分配CFD研究与优化[J]. 核技术,2016, 39(8): 080603. [10] 董化平,樊文远,郭赟. 动网格技术在板状燃料组件流道阻塞事故模拟中的应用[J]. 海军工程大学学报,2018, 30(1): 17-21. doi: 10.7495/j.issn.1009-3486.2018.01.004 [11] 程瑞琪,熊进标. 板状燃料组件进口堵流事故数值模拟[J]. 核动力工程,2020, 41(S2): 92-97. doi: 10.13832/j.jnpe.2020.S2.0092 [12] 程瑞琪. 基于CFD模拟的板状燃料入口堵流传热研究[D]. 上海: 上海交通大学, 2020. [13] 苏光辉, 秋穗正, 田文喜, 等. 核动力系统热工水力计算方法[M]. 北京: 清华大学出版社, 2013. [14] GONG D X, HUANG S F, WANG G B, et al. Heat transfer calculation on plate-type fuel assembly of high flux research reactor[J]. Science and Technology of Nuclear Installations, 2015(3): 1-13. [15] JO D, AL-YAHIA O S, ALTAMIMI R M, et al. Experimental investigation of convective heat transfer in a narrow rectangular channel for upward and downward flows[J]. Nuclear Engineering and Technology, 2014, 46(2): 195-206. doi: 10.5516/NET.02.2013.057