Research on Direct Transport Calculation Method Based on Numerical Nuclear Reactor Physics Code SHARK
-
摘要: 为建立基于数字化反应堆技术的新一代反应堆物理计算方法,实现数字化反应堆高保真建模、高分辨率高精度计算,基于数字化反应堆物理计算程序SHARK,开展了一步法输运计算方法研究,建立并比较了二维/一维方法及准三维特征线输运方法;基于空间区域分解及粗网有限差分(CMFD)的大规模并行加速技术,实现了棒状堆芯及板状堆芯的全堆规模一步法输运计算。数值结果与蒙特卡罗程序基准解相比,特征值偏差小于100pcm(1pcm=10–5),最大棒功率、板功率偏差小于3%,验证了SHARK程序一步法输运计算方法具有良好计算精度,能够适用于棒状、板状堆芯等多应用场景。Abstract: In order to establish the next-generation reactor physics calculation method based on the numerical nuclear reactor technology and realize high-fidelity modeling, high-resolution and high-precision calculation, the research of direct transport method was conducted based on the numerical nuclear reactor physics code SHARK, and 2D/1D and quasi-3D MOC methods were built and compared. Based on the large-scale parallel acceleration technology of domain decomposition and coarse mesh finite difference (CMFD), the whole reactor direct transport calculation was realized for the pin-type and plate-type cores. Compared with Monte-Carlo reference results, eigenvalue differences were less than 100pcm (1pcm=10–5) and maximum pin/plate powers were less than 3%. Numerical results showed the good accuracy of SHARK in the direct transport calculation, and can be apllied in multi-application scenarios of pin-type and plate-type cores.
-
Key words:
- Numerical nuclear reactor /
- 2D/1D method /
- Quasi-3D MOC method /
- SHARK
-
表 1 C5G7基准题二维/一维方法计算结果
Table 1. Results of C5G7 Benchmark with 2D/1D Method
C5G7二维/一维计算结果 不插棒 半插棒 全插棒 特征值偏差/pcm −45 −45 −59 棒功率偏差/% 最大 #1层 0.867 0.967 0.759 均方根 0.406 0.478 0.327 最大 #2层 1.477 1.228 1.187 均方根 0.396 0.338 0.292 最大 #3层 1.719 1.581 1.696 均方根 0.458 0.475 0.464 计算时间/核时 69 63 63 表 2 C5G7基准题准三维特征线方法计算结果
Table 2. Results of C5G7 Benchmark with Quasi-3D MOC Method
C5G7准三维计算结果 不插棒 半插棒 全插棒 特征值偏差/pcm −14 −15 −23 棒功率偏差/% 最大 #1层 1.049 1.192 0.967 均方根 0.295 0.338 0.478 最大 #2层 1.242 1.111 1.228 均方根 0.341 0.327 0.338 最大 #3层 1.348 1.200 1.581 均方根 0.371 0.357 0.475 计算时间/核时 185 186 187 表 3 KUCA基准题计算结果
Table 3. Calcualtion Results of KUCA Benchmark
KUCA准三维计算结果 全提棒 全插棒 特征值偏差/pcm −81 −19 燃料注量率偏差/% 快群 0.09 −0.50 热群 0.24 −0.15 反射层注量率偏差/% 快群 0.55 0.13 热群 0.01 0.06 控制棒/气隙注量率偏差/% 快群 −0.33 −0.05 热群 −0.63 0.30 表 4 宏观BEAVRS基准题计算结果
Table 4. Calcualtion Results of Macro BEAVRS Benchmark
宏观BEAVRS计算结果 二维/一维
方法准三维特征
线方法特征值偏差/pcm 9 13 径向棒功率偏差/% 最大 2.9 3.2 均方根 0.5 0.4 径向组件功率偏差/% 最大 1.2 1.1 均方根 0.4 0.3 表 5 JRR-3M板状宏观基准题计算结果
Table 5. Calcualtion Results of Macro JRR-3M Benchmark
计算结果 算例 AAO AAI RMC程序特征值(参考解) 0.88223 1.08964 SHARK程序特征值 0.88121 1.08890 特征值计算偏差/pcm −102 −74 三维平板
裂变率偏差/%最大 1.68 2.10 均方根 0.35 0.30 -
[1] SZILARD R, ZHANG H B, KOTHE D, et al. The consortium for advanced simulation of light water reactors: INL/CON-11-22917[R]. Idaho Falls: Idaho National Laboratory, 2011. [2] 邓力,史敦福,李刚. 数值反应堆多物理耦合关键技术[J]. 计算物理,2016, 33(6): 631-638. doi: 10.3969/j.issn.1001-246X.2016.06.002 [3] WEBER D P, SOFU T, PFEIFFER P A, et al. The numerical nuclear reactor for high fidelity integrated simulation of Neutronic, thermal-hydraulic and Thermo mechanical phenomena-project overview[C]//PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments. Chicago: American Nuclear Society, 2004. [4] KOTHE D B. CASL: the consortium for advanced simulation of light water reactors[R]. Washington: A DOE Energy Innovation Hub, 2010. [5] 梁亮. 基于特征线方法的2D/1D及2D/3D耦合中子输运计算方法[D]. 西安: 西安交通大学, 2017. [6] 赵晨. 二维/一维耦合特征线方法的改进及在数值反应堆物理计算中的应用[D]. 西安: 西安交通大学, 2019. [7] KELLEY B W, LARSEN E W. 2D/1D approximations to the 3D neutron transport equation. I: Theory[C]//2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Sun Valley: U. S. Department of Energy, 2013. [8] JUNG Y S. Development of practical numerical nuclear reactor for high fidelity core analysis[D]. Korea: Seoul National University, 2013. [9] HURSIN M. Full core, heterogeneous, time dependent neutron transport calculation with the 3D code DeCART[D]. Berkeley: University of California, Berkeley, 2010. [10] CHOI S, CHOE J, HOANG K, et al. Recent development status of neutron transport code STREAM[C]//Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea, 2019. [11] CHEN J, LIU Z Y, ZHAO C, et al. A new high-fidelity neutronics code NECP-X[J]. Annals of Nuclear Energy, 2018, 116: 417-428. doi: 10.1016/j.anucene.2018.02.049 [12] ZHANG T F, XIAO W, YIN H, et al. VITAS: A multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335 [13] ZHAO C, LIU Z Y, LIANG L, et al. Improved leakage splitting method for the 2D/1D transport calculation[J]. Progress in Nuclear Energy, 2018, 105: 202-210. doi: 10.1016/j.pnucene.2018.01.007 [14] ZHU A, JARRETT M, XU Y L, et al. An optimally diffusive coarse mesh finite difference method to accelerate neutron transport calculations[J]. Annals of Nuclear Energy, 2016, 95: 116-124. doi: 10.1016/j.anucene.2016.05.004 [15] M.A. Smith, E.E. Lewis, Byung-Chan Na. Benchmark on deterministic 3-D MOX fuel assembly transport calculations without spatial homogenization[J]. Progress in Nuclear Energy, 2006, 48: 383−393. [16] TAKEDA T, IKEDA H. 3-D neutron transport benchmarks[J]. Journal of Nuclear Science and Technology, 1991, 28(7): 656-669. doi: 10.1080/18811248.1991.9731408 [17] WANG K, LI Z G, SHE D, et al. RMC – A monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82: 121-129. doi: 10.1016/j.anucene.2014.08.048 [18] IWASAKI J, TSURUTA H, ICHIKAWA H. Neutronics calculation of upgraded JRR-3: JAERI-M 85-062[R]. Naka: Japan Atomic Energy Research Institute, 1985.