高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究

刘莉 袁俊杰 顾汉洋 包睿祺 刘茂龙 王科

刘莉, 袁俊杰, 顾汉洋, 包睿祺, 刘茂龙, 王科. 铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究[J]. 核动力工程, 2023, 44(4): 55-64. doi: 10.13832/j.jnpe.2023.04.0055
引用本文: 刘莉, 袁俊杰, 顾汉洋, 包睿祺, 刘茂龙, 王科. 铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究[J]. 核动力工程, 2023, 44(4): 55-64. doi: 10.13832/j.jnpe.2023.04.0055
Liu Li, Yuan Junjie, Gu Hanyang, Bao Ruiqi, Liu Maolong, Wang Ke. Numerical Study on Flow and Heat Transfer of High-pressure Sub-cooled Water Injection into High-temperature Lead-bismuth Alloy under Lead-bismuth Cooled Fast Reactor SGTR Accident[J]. Nuclear Power Engineering, 2023, 44(4): 55-64. doi: 10.13832/j.jnpe.2023.04.0055
Citation: Liu Li, Yuan Junjie, Gu Hanyang, Bao Ruiqi, Liu Maolong, Wang Ke. Numerical Study on Flow and Heat Transfer of High-pressure Sub-cooled Water Injection into High-temperature Lead-bismuth Alloy under Lead-bismuth Cooled Fast Reactor SGTR Accident[J]. Nuclear Power Engineering, 2023, 44(4): 55-64. doi: 10.13832/j.jnpe.2023.04.0055

铅铋快堆SGTR事故下高压过冷水注入高温铅铋合金流动传热数值模拟研究

doi: 10.13832/j.jnpe.2023.04.0055
基金项目: 国家自然科学基金资助项目(51906147);上海市自然科学基金资助项目(21ZR1430900)
详细信息
    作者简介:

    刘 莉(1988—),女,副教授,研究方向为反应堆热工水力,E-mail: liulide@sjtu.edu.cn

    通讯作者:

    顾汉洋,E-mail: guhanyang@sjtu.edu.cn

  • 中图分类号: TL331

Numerical Study on Flow and Heat Transfer of High-pressure Sub-cooled Water Injection into High-temperature Lead-bismuth Alloy under Lead-bismuth Cooled Fast Reactor SGTR Accident

  • 摘要: 铅铋快堆内蒸汽发生器传热管两侧为高压过冷水和高温铅铋冷却剂,传热管两侧较大的压差和温差以及液态铅铋合金(LBE)的腐蚀效应可能造成蒸汽发生器传热管破裂(SGTR)事故。深入研究事故后高压过冷水冲击高温液态LBE的射流沸腾和相变产物蒸汽扩散的特征,具有十分重要的学术意义和工程应用价值。为揭示事故工况下液态LBE与水相互作用的传热传质机理,基于流体体积(VOF)方法,结合LES湍流模型和Lee相变模型,建立了水/蒸汽-液态铅铋多相流动与传热的三维数值计算模型,系统研究了高压过冷水注入高温LBE内发生的相变传热过程。结合注入压力及过冷水温度等因素,分析了射流沸腾过程中不同工况对射流形态、迁移深度以及沸腾行为的影响,研究结果可为SGTR事故工况下堆芯安全性预测提供指导。

     

  • 图  1  计算域

    Figure  1.  Computational Domain

    图  2  网格和时间步长无关性验证

    Figure  2.  Independence Verification of Grid and Time Step

    图  3  乙醇射流和FC3283沸腾过程的比较

    Figure  3.  Comparison of Boiling Processes of Ethanol Jet and FC3283

    图  4  乙醇蒸汽体积的计算

    Figure  4.  Calculation of Ethanol Vapor Volume

    图  5  乙醇蒸汽体积变化对比

    Figure  5.  Comparison of Ethanol Vapor Volume Changes

    图  6  射流轮廓绘制

    Figure  6.  Jet Profile Drawing Method

    图  7  过冷水射流和LBE相互作用过程

    Figure  7.  Interaction Process of Water Jet and LBE

    图  8  射流截面的温度分布

    Figure  8.  Temperature Distribution of Jet Cross Section

    图  9  水锤效应引起的压力波动

    Figure  9.  Pressure Fluctuation Caused by Water Hammer Effect      

    图  10  不同过冷水温度下过冷水和LBE相互作用过程

    Figure  10.  Interaction Process of Sub-cooled Water and LBE at Different Water Temperatures

    图  11  不同注入压力下过冷水和LBE相互作用过程

    Figure  11.  Interaction Process of Sub-cooled Water and LBE at Different Injection Pressures

    表  1  模拟计算工况

    Table  1.   Simulation Calculation Conditions

    工况Case 1Case 2Case 3Case 4Case 5
    入口压力/MPa246810
    过冷水温度/℃200200200200200
    LBE温度/℃400400400400400
    工况Case 6Case 7Case 8Case 9
    入口压力/MPa6666
    过冷水温度/℃140170230260
    LBE温度/℃400400400400
    下载: 导出CSV
  • [1] 国家发展改革委, 国家能源局. 能源技术革命创新行动计划(2016-2030年)[EB/OL]. (2016-06-01). https://www.gov.cn/xinwen/2016-06/01/content_5078628.htm.
    [2] ZOHURI B. Generation IV nuclear reactors[M]//KHAN S U D, NAKHABOV A. Nuclear Reactor Technology Development and Utilization: Woodhead Publishing Series in Energy. Amsterdam: Elsevier, 2020: 213-246.
    [3] 张朝东. 蒸汽发生器管道破裂对铅基堆热工安全特性影响分析研究[D]. 合肥: 中国科学技术大学, 2018.
    [4] ISKHAKOV A S, MELIKHOV V I, MELIKHOV O I, et al. Steam generator tube rupture in lead-cooled fast reactors: estimation of impact on neighboring tubes[J]. Nuclear Engineering and Design, 2019, 341: 198-208. doi: 10.1016/j.nucengdes.2018.11.001
    [5] SA R, TAKAHASHI M. Experimental study on thermal interaction of ethanol jets in high temperature fluorinert[J]. Journal of Power and Energy Systems, 2012, 6(2): 314-323. doi: 10.1299/jpes.6.314
    [6] ZHOU Y, CHEN J T, HUANG Q Y, et al. Study on final depth under hydraulic coolant penetration condition[C]//Proceedings of the 25th International Conference on Nuclear Engineering. Shanghai: American Society of Mechanical Engineers, 2017: V006T08A019.
    [7] BEZNOSOV A V, PINAEV S S, DAVYDOV D V, et al. Experimental studies of the characteristics of contact heat exchange between lead coolant and the working body[J]. Atomic Energy, 2005, 98(3): 170-176. doi: 10.1007/s10512-005-0188-4
    [8] SIBAMOTO Y, KUKITA Y, NAKAMURA H. Small-scale experiment on subcooled water jet injection into molten alloy by using fluid temperature-phase coupled measurement and visualization[J]. Journal of Nuclear Science and Technology, 2007, 44(8): 1059-1069. doi: 10.1080/18811248.2007.9711347
    [9] SIBAMOTO Y, KUKITA Y, NAKAMURA H. Visualization and measurement of subcooled water jet injection into high-temperature melt by using high-frame-rate neutron radiography[J]. Nuclear Technology, 2002, 139(3): 205-220. doi: 10.13182/NT02-A3314
    [10] PESETTI A, DEL NEVO A, FORGIONE N. Experimental investigation and SIMMER-III code modelling of LBE-water interaction in LIFUS5/Mod2 facility[J]. Nuclear Engineering and Design, 2015, 290: 119-126. doi: 10.1016/j.nucengdes.2014.11.016
    [11] ZHOU Y, CHEN J T, ZHONG M J, et al. Numerical simulation of metal jet breakup, cooling and solidification in water[J]. International Journal of Heat and Mass Transfer, 2017, 109: 1100-1109. doi: 10.1016/j.ijheatmasstransfer.2017.02.083
    [12] IKEDA H, KOSHIZUKA S, OKA Y, et al. Numerical analysis of jet injection behavior for fuel-coolant interaction using particle method[J]. Journal of Nuclear Science and Technology, 2001, 38(3): 174-182. doi: 10.1080/18811248.2001.9715019
    [13] 于启帆,赵亚峰,王成龙,等. 铅基快堆SGTR事故下热工水力模拟及气腔扩散行为研究[J]. 原子能科学技术,2022, 56(10): 2015-2023.
    [14] ZHOU Y, ZHONG M J, FAN X, et al. A numerical simulation of water jet injection behavior in fuel-coolant interaction[J]. Journal of Nuclear Science and Technology, 2017, 54(2): 174-181. doi: 10.1080/00223131.2016.1224740
    [15] WANG S, FLAD M, MASCHEK W, et al. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling[J]. Progress in Nuclear Energy, 2008, 50(2-6): 363-369. doi: 10.1016/j.pnucene.2007.11.018
    [16] DI MAIO P, ARENA P, D’ALEO F, et al. Thermal-hydraulic and thermo-mechanical simulations of Water-Heavy Liquid Metal interactions towards the DEMO WCLL breeding blanket design[J]. Fusion Engineering and Design, 2019, 146: 2712-2716. doi: 10.1016/j.fusengdes.2019.04.093
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  75
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2022-12-09
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回