高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热管熔盐堆堆芯倾角对堆芯熔盐自然对流影响研究

陈泽瀚 陈兴伟 戴叶 邹杨

陈泽瀚, 陈兴伟, 戴叶, 邹杨. 热管熔盐堆堆芯倾角对堆芯熔盐自然对流影响研究[J]. 核动力工程, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079
引用本文: 陈泽瀚, 陈兴伟, 戴叶, 邹杨. 热管熔盐堆堆芯倾角对堆芯熔盐自然对流影响研究[J]. 核动力工程, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079
Chen Zehan, Chen Xingwei, Dai Ye, Zou Yang. Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core[J]. Nuclear Power Engineering, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079
Citation: Chen Zehan, Chen Xingwei, Dai Ye, Zou Yang. Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core[J]. Nuclear Power Engineering, 2023, 44(4): 79-87. doi: 10.13832/j.jnpe.2023.04.0079

热管熔盐堆堆芯倾角对堆芯熔盐自然对流影响研究

doi: 10.13832/j.jnpe.2023.04.0079
基金项目: 国家重点研发计划(2020YFB1902000);中国科学院战略性先导科技专项项目(XDA02010000);中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC016)
详细信息
    作者简介:

    陈泽瀚(1997—),男,硕士研究生,现主要从事反应堆热工水力方向的研究,E-mail: chenzehan@sinap.ac.cn

    通讯作者:

    戴 叶,E-mail: daiye@sinap.ac.cn

  • 中图分类号: TL3;TK124

Study on the Effect of Inclination Angle on the Natural Convection of Molten Salt in Heat Pipe Cooled Molten Salt Reactor Core

  • 摘要: 热管熔盐堆堆芯倾角对堆芯温度分布和局部热点具有重要影响。为获得堆芯在不同倾角下内部熔盐的自然对流换热特性、优化堆芯设计和提高系统安全性,对堆芯进行三维建模,通过Fluent软件进行数值模拟,对横置和竖置放置2种情况下堆芯内熔盐自然对流的温度场和流场进行了分析,同时讨论了堆芯倾角变化对堆芯温度场及局部热点的影响。研究结果表明:局部热点始终出现在堆芯上部,相对于竖置,横置时堆芯温度场及流场更加不稳定。当倾角在5°~10°范围内,局部热点温度最高,竖置时热点温度最低。模拟结果揭示了堆芯内熔盐的自然对流特性,并为热管熔盐堆热工方面的概念设计提供了一定参考。

     

  • 图  1  热管熔盐堆概念设计

    Figure  1.  Conceptual Design of Heat Pipe-cooled MSR

    图  2  热管熔盐堆堆芯几何模型

    Figure  2.  Geometric Model of Heat Pipe-cooled MSR Core

    图  3  热管熔盐堆堆芯不同的布置方式

    θ—倾角

    Figure  3.  Different Arrangements of Heat Pipe-cooled MSR Cores    

    图  4  堆芯模型的网格划分

    Figure  4.  Core Model Meshing

    图  5  网格无关性验证

    Figure  5.  Mesh Independence Verification

    图  6  大空间堆芯横置热管与熔盐换热的模型验证

    Figure  6.  Model Verification of Heat Exchange between Horizontal Heat Pipe and Molten Salt in Large Space Core

    图  7  大空间竖置热管与熔盐换热的模型验证

    Figure  7.  Model Verification of Heat Exchange between Vertical Heat Pipe and Molten Salt in Large Space

    图  8  管排与熔盐换热的模型验证

    Figure  8.  Model Verification of Heat Transfer between Pipe Array and Molten Salt

    图  9  竖置式热管熔盐堆堆芯温度云图

    Figure  9.  Temperature Contour of Vertical Heat Pipe-cooled MSR Core

    图  10  竖置式热管熔盐堆堆芯x=0截面的速度矢量图

    Figure  10.  Velocity Vector Diagram of x=0 Section of Vertical Heat Pipe-Cooled MSR Core

    图  11  横置式热管熔盐堆堆芯温度云图

    Figure  11.  Temperature Contour of Horizontal Heat Pipe-cooled MSR Core

    图  12  横置式热管熔盐堆堆芯横截面的速度矢量图

    Figure  12.  Velocity Vector Diagram of Across Section of Horizontal Heat Pipe-cooled MSR Core

    图  13  横置式热管熔盐堆堆芯横截面的流线图

    Figure  13.  Streamline Diagram of Across Section of Horizontal Heat Pipe-cooled MSR Core

    图  14  不同倾角下堆芯的温度云图

    Figure  14.  Temperature Contours of the Core at Different Inclination Angles

    图  15  不同倾角下堆芯y轴顶部的轴向温度分布图

    Figure  15.  Axial Temperature Distribution of y-axis Upper Part of the Core at Different Inclination Angles

    图  16  不同倾角下堆芯z轴顶部的径向温度分布图

    Figure  16.  Radial Temperature Distribution of z-axis Top of the Core at Different Inclination Angles

    图  17  不同倾角下堆芯局部热点温度与平均对流换热系数

    Figure  17.  Local Hot Spot Temperature and Natural Convection Heat Transfer Coefficient of the Core at Different Inclination Angles

    表  1  热管熔盐堆堆芯参数表

    Table  1.   Main Parameters of Heat Pipe-cooled MSR Core

    参数数值
    堆芯热功率/kW30
    堆芯高度/mm620
    堆芯直径/mm350
    热管数量/根37
    热管中心距/mm48.73
    热管直径/mm32
    热管长度/mm620
    下载: 导出CSV

    表  2  熔盐的物性性质

    Table  2.   Physical Properties of Molten Salt

    物性参数数值
    熔盐成分72.5LiF-27.5UF4
    熔点/K858
    密度/(kg·m−3)6105−1.272Tsalt
    比热容/(J·kg−1·K−1)1000
    动力粘度/(Pa·s)0.07696·exp[(4976/Tsalt)/1000]
    热导率/(W·m−1·K−1)1.1
    下载: 导出CSV
  • [1] WANG X, ZHANG Q, ZHUANG K, et al. Neutron physics of the liquid‐fuel heat‐pipe reactor concept with molten salt fuel—Static calculations[J]. International Journal of Energy Research, 2019, 43(14): 7852-7865.
    [2] LIU M H, ZHANG D L, WANG C L, et al. Experimental study on heat transfer performance between fluoride salt and heat pipes in the new conceptual passive residual heat removal system of molten salt reactor[J]. Nuclear Engineering and Design, 2018, 339: 215-224. doi: 10.1016/j.nucengdes.2018.09.015
    [3] PETRUCCI M, FAGHRI A. Multiple evaporator and condenser loop thermosyphon system for passive cooling of liquid-fuel molten salt nuclear reactors[J]. Nuclear Engineering and Design, 2020, 370: 110936. doi: 10.1016/j.nucengdes.2020.110936
    [4] 于世和,孙强,赵恒,等. 火星熔盐堆堆芯概念设计[J]. 核技术,2020, 43(5): 67-72. doi: 10.11889/j.0253-3219.2020.hjs.43.050603
    [5] CUI D Y, DAI Y, CAI X Z, et al. Preconceptual nuclear design of a 50 kWth heat pipe cooled micro molten salt reactor (micro-MSR)[J]. Progress in Nuclear Energy, 2021, 134: 103670. doi: 10.1016/j.pnucene.2021.103670
    [6] 胡光,崔德阳,卢林远,等. 1MWth火星表面热管熔盐堆堆芯初步中子学设计[J]. 核技术,2021, 44(12): 97-106. doi: 10.11889/j.0253-3219.2021.hjs.44.120603
    [7] 余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8. doi: 10.13832/j.jnpe.2019.04.0001
    [8] 李华琪,江新标,陈立新,等. 空间堆热管输热能力分析[J]. 原子能科学技术,2015, 49(1): 89-95. doi: 10.7538/yzk.2015.49.01.0089
    [9] TENG W F, WANG X Y, ZHU Y Z. Experimental investigations on start-up and thermal performance of sodium heat pipe under swing conditions[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119505. doi: 10.1016/j.ijheatmasstransfer.2020.119505
    [10] JANZ G J, GARDNER G L, KREBS U, et al. Molten salts: volume 4, part 1, fluorides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1974, 3(1): 1-115. doi: 10.1063/1.3253134
    [11] CHEN X W, ZOU Y, CHEN Z H, et al. Effect of core configuration on natural convection and heat transfer in heat pipe cooled micro-MSRs[J]. Nuclear Engineering and Design, 2022, 395: 111839. doi: 10.1016/j.nucengdes.2022.111839
    [12] PEROVIĆ B D, KLIMENTA J L, TASIĆ D S, et al. Modeling the effect of the inclination angle on natural convection from a flat plate: the case of a photovoltaic module[J]. Thermal Science, 2017, 21(2): 925-938. doi: 10.2298/TSCI140821059P
    [13] NIAZI S, BENI M N. Numerical study of the effect of a nanofluid with nanoparticles of nonuniform size on natural convection in an inclined enclosure[J]. Nanoscience and Technology:An International Journal, 2017, 8(4): 261-308. doi: 10.1615/NanoSciTechnolIntJ.v8.i4.10
    [14] LU S H, ZHU J Q, GAO D Y, et al. Lattice Boltzmann simulation for natural convection of supercritical CO2 in an inclined square cavity[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30(7): 3635-3652. doi: 10.1108/HFF-08-2019-0641
    [15] ELBAKHSHAWANGY H F. Effect of tilting angle on natural convection heat transfer from a cylinder suspended in stagnant water[J]. Arab Journal of Nuclear Sciences and Applications, 2020, 53(2): 56-67. doi: 10.21608/ajnsa.2020.15243.1244
    [16] ROY K, DAS B, DUTTA S. Natural convective heat transfer from an inclined isothermal fin array[C]// Advances in Mechanical Engineering. Singapore: Select Proceedings of ICRIDME 2018. Springer Singapore, 2020: 1055-1068.
    [17] ASHJAEE M, YOUSEFI T. Experimental study of free convection heat transfer from horizontal isothermal cylinders arranged in vertical and inclined arrays[J]. Heat Transfer Engineering, 2007, 28(5): 460-471. doi: 10.1080/01457630601165822
    [18] 贾笃雨. 高温熔盐在圆管表面自然对流换热的数值研究[D]. 天津: 河北工业大学, 2016.
    [19] REYMOND O, MURRAY D B, O’DONOVAN T S. Natural convection heat transfer from two horizontal cylinders[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1702-1709. doi: 10.1016/j.expthermflusci.2008.06.005
    [20] WANG C L, QIN H, ZHANG D L, et al. Numerical investigation of natural convection characteristics of a heat pipe-cooled passive residual heat removal system for molten salt reactors[J]. Nuclear Science and Techniques, 2020, 31(7): 87-95. doi: 10.1007/s41365-020-00780-z
    [21] YODER G L JR, HEATHERLY D W, WILLIAMS D F, et al. Liquid fluoride salt experimentation using a small natural circulation cell: ORNL/TM-2014/56[R]. Oak Ridge: Oak Ridge National Lab, 2014.
    [22] 杨世铭, 陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社, 2006: 267-269.
    [23] YODER G L JR. Examination of liquid fluoride salt heat transfer[C]//Proceedings of the ICAPP 2014. Charlotte, 2014: 6-9
    [24] TSUBOUCHI T, MASUDA H. Heat transfer by natural convection from horizontal cylinders at low Rayleigh numbers[R]. Tohoku: Tohoku University, 1967, 19: 205-219
    [25] CHURCHILL S W, CHU H H S. Correlating equations for laminar and turbulent free convection from a horizontal cylinder[J]. International Journal of Heat and Mass Transfer, 1975, 18(9): 1049-1053. doi: 10.1016/0017-9310(75)90222-7
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  48
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 录用日期:  2022-10-11
  • 修回日期:  2022-09-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回