Effect of the Arrangement for Grid Spacers with Mixing Vanes on the Thermal Hydraulic Characteristics of a 5×5 Rod Bundle via CFD Analysis
-
摘要: 为探究棒束通道定位格架的最优排布方式,本文采用计算流体动力学(CFD)方法对包含3个格架部件的5×5棒束通道进行流场和温度场的数值仿真,研究格架轴向间距以及格架相对转角对通道阻力和传热特性的影响,并从对流传热的角度分析造成不同结果的原因。研究表明,在本文设计的计算工况下,改变格架轴向间距对棒束阻力和传热特性的影响较小;将中间格架在横截面内相对两端格架旋转90°放置能够有效降低横截面温度分布的不均匀性,减小横截面最高温度。
-
关键词:
- 计算流体动力学(CFD) /
- 定位格架 /
- 5×5棒束通道
Abstract: In order to optimize the arrangement of the grid spacer for a rod bundle, the computational fluid dynamics (CFD) method is employed to analyze the flow and temperature fields for a 5×5 rod bundle equipped with three grid spacers. The effect of the axial separation between two neighboring grid spacers and the relative rotation angle of the grid spacer is investigated, and the reasons for different results are analyzed from the perspective of convective heat transfer. It is found that the variation of axial separation brings negligible change on the drag and heat-transfer characteristics of the rod bundle. However, rotating the middle grid by 90° relative to the grids at both ends in the cross section can effectively reduce the non-uniformity of temperature distribution in the cross section and reduce the maximum temperature in the cross section.-
Key words:
- CFD /
- Grid spacer /
- 5×5 rod bundle
-
表 1 计算工况参数表
Table 1. Parameters for CFD Cases
工况 D/mm R 1 179.5 0° 2 229.5 0° 3 279.5 0° 4 329.5 0° 5 379.5 0° 6 279.5 90° -
[1] IN W K, OH D S, CHUN T H. Flow analysis for optimum design of mixing vane in a PWR fuel assembly[J]. Nuclear Engineering and Technology, 2001, 33(3): 327-338. [2] KIM K Y, SEO J W. Numerical optimization for the design of a spacer grid with mixing vanes in a pressurized water reactor fuel assembly[J]. Nuclear Technology, 2005, 149(1): 62-70. doi: 10.13182/NT05-A3579 [3] HOLLOWAY M V, CONOVER T A, MCCLUSKY H L, et al. The effect of support grid design on azimuthal variation in heat transfer coefficient for rod bundles[J]. Journal of Heat Transfer, 2005, 127(6): 598-605. doi: 10.1115/1.1863274 [4] IKEDA K. CFD application to advanced design for high efficiency spacer grid[J]. Nuclear Engineering and Design, 2014, 279: 73-82. doi: 10.1016/j.nucengdes.2014.02.013 [5] 陈畏葓,张虹,张凤林,等. 先进燃料组件格架交混性能分析[J]. 核动力工程,2008, 29(3): 1-4,27. [6] 王海松,冷洁,刘绍强,等. 不同搅混翼定位格架5×5棒束通道内流动与传热特性数值研究[J]. 热科学与技术,2017, 16(3): 187-192. [7] 王烨,孙兰昕,徐长哲,等. 反应堆棒束通道搅混翼数值研究[J]. 核动力工程,2019, 40(6): 54-58. doi: 10.13832/j.jnpe.2019.06.0054 [8] WANG Y J, WANG M J, JU H R, et al. CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR[J]. Nuclear Engineering and Technology, 2020, 52(7): 1386-1395. doi: 10.1016/j.net.2019.12.012 [9] ZHANG J, WANG M J, CHEN C, et al. CFD investigation of the cold wall effect on CHF in a 5×5 rod bundle for PWRs[J]. Nuclear Engineering and Design, 2022, 387: 111589. doi: 10.1016/j.nucengdes.2021.111589 [10] JU H R, YU H, WANG M J, et al. LES and URANS study on turbulent flow through 3×3 rod bundle with spacer grid and mixing vanes using spectral element method[J]. Annals of Nuclear Energy, 2021, 161: 108474. doi: 10.1016/j.anucene.2021.108474 [11] WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836 [12] 张小英,孙庆友,乔磊,等. 全结构的5×5定位格架及棒束通道的三维流场分析[J]. 华南理工大学学报:自然科学版,2014, 42(12): 104-111. [13] LIU C C, FERNG Y M, SHIH C K. CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly[J]. Applied Thermal Engineering, 2012, 40: 389-396. doi: 10.1016/j.applthermaleng.2012.02.027