高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂流域中异型结构附加质量精细化计算方法研究

谈熙明 高付海 齐敏 王月英 刘兆阳

谈熙明, 高付海, 齐敏, 王月英, 刘兆阳. 复杂流域中异型结构附加质量精细化计算方法研究[J]. 核动力工程, 2023, 44(4): 100-106. doi: 10.13832/j.jnpe.2023.04.0100
引用本文: 谈熙明, 高付海, 齐敏, 王月英, 刘兆阳. 复杂流域中异型结构附加质量精细化计算方法研究[J]. 核动力工程, 2023, 44(4): 100-106. doi: 10.13832/j.jnpe.2023.04.0100
Tan Ximing, Gao Fuhai, Qi Min, Wang Yueying, Liu Zhaoyang. Study on Refined Calculation Method for Added Mass of Special-shaped Structures in Complex Fluid Domain[J]. Nuclear Power Engineering, 2023, 44(4): 100-106. doi: 10.13832/j.jnpe.2023.04.0100
Citation: Tan Ximing, Gao Fuhai, Qi Min, Wang Yueying, Liu Zhaoyang. Study on Refined Calculation Method for Added Mass of Special-shaped Structures in Complex Fluid Domain[J]. Nuclear Power Engineering, 2023, 44(4): 100-106. doi: 10.13832/j.jnpe.2023.04.0100

复杂流域中异型结构附加质量精细化计算方法研究

doi: 10.13832/j.jnpe.2023.04.0100
详细信息
    作者简介:

    谈熙明(1989—),男,硕士研究生,现主要从事反应堆结构力学方面的研究,E-mail: tanximing_acade@163.com

  • 中图分类号: TL364

Study on Refined Calculation Method for Added Mass of Special-shaped Structures in Complex Fluid Domain

  • 摘要: 反应堆堆内构件工程设计通常采用附加质量方法模拟流体对结构的动力作用。以浸没在复杂流域中某异型压力管为例,提出了一种结构附加质量迭代计算方法,即以声固耦合分析得出的湿模态为基准,综合考虑流体密度和体积模量精细化确定结构附加质量,并讨论了该方法的适用范围。通过压力管1∶1振动试验实测与仿真结果对比,证明了附加质量精细化计算的准确性。结果表明,本文方法能较为精确地获得结构的主频和振型,具有较快的收敛速度,可供类似工程仿真分析参考借鉴。

     

  • 图  1  CAS模型示意图

    Figure  1.  Schematic Diagram of CAS Model

    图  2  压力管3个方向主振型归一化位移

    Figure  2.  Normalized Displacement of Pressure Pipe for Main Vibration Mode in Three Directions

    图  3  压力管结构模型各阶特征频率

    Figure  3.  Characteristic Frequencies of Each Order of Pressure Pipe Structure Model

    图  4  压力管结构模型第20阶位移振型

    Figure  4.  20th Order Displacement Vibration Mode of Pressure Pipe Structure Model

    图  5  压力管试验件结构示意图

    Figure  5.  Schematic Diagram for Test Piece Structure of Pressure Pipe

    图  6  压力管试验件有限元模型

    Figure  6.  Finite Element Model of Pressure Pipe Test Piece

    表  1  压力管频率计算结果

    Table  1.   Calculation Results for Pressure Pipe Frequency

    方向湿模态频率/Hz干模态(无附加质量)干模态(含附加质量)
    频率/Hz偏差/%附加质量系数频率/Hz偏差/%附加质量系数
    X20.04926.58632.610.75820.0520.010
    Y34.33643.93127.940.63733.134−3.50−0.069
    Z43.38059.45237.050.87844.8413.370.068
      偏差=(干模态频率−湿模态频率)/湿模态频率×100%
    下载: 导出CSV

    表  2  压力管试验件固有频率对比结果

    Table  2.   Comparison Results of Natural Frequencies of Pressure Pipe Test Piece

    方向固有频率实
    测值/Hz
    实测
    值降
    幅/%
    固有频率仿
    真值/Hz
    仿真
    值降
    幅/%
    偏差/%
    空气中水中空气中水中空气中水中
    X17.8859.84944.9319.27211.42140.747.7615.96
    Y24.88917.11331.2424.43515.37637.07−1.82−10.15
    Z33.18123.56228.9932.68719.88539.17−1.49−15.61
      降幅=(空气中频率−水中频率)/空气中频率×100%;偏差=(仿真值−试验值)/试验值×100%
    下载: 导出CSV
  • [1] 杨红义, 余华金, 王月英. 我国钠冷快堆结构力学的发展现状及前景[C]//第十七届全国反应堆结构力学会议论文集. 上海: 中国力学学会, 2012: 11-16.
    [2] PENG Q, SU X, LI J, et al. Boundary effect on the dynamic response of a 7-hexagon fuel ducts submerged in fluid[J]. Nuclear Engineering and Design, 2020, 370: 110870. doi: 10.1016/j.nucengdes.2020.110870
    [3] SARPKAYA T. Vortex-induced oscillations: a selective review[J]. Journal of Applied Mechanics, 1979, 46(2): 241-258. doi: 10.1115/1.3424537
    [4] CHEN S S. Fluid damping for circular cylindrical structures[J]. Nuclear Engineering and Design, 1981, 63(1): 81-100. doi: 10.1016/0029-5493(81)90018-2
    [5] MULCAHY T M. Fluid forces on rods vibrating in finite length annular regions[J]. Journal of Applied Mechanics, 1980, 47(2): 234-240. doi: 10.1115/1.3153648
    [6] BLEVINS R D. Formulas for natural frequency and mode shape[M]. New York: Van Nostrand Reinhold, 1979: 1-16.
    [7] AU-YANG M K. Generalized hydrodynamic mass for beam mode vibration of cylinders coupled by fluid gap[J]. Journal of Applied Mechanics, 1977, 44(1): 172-173. doi: 10.1115/1.3423989
    [8] PETTIGREW M J, TAYLOR C E, KIM B S. Vibration of tube bundles in two-phase cross-flow: Part 1—hydrodynamic mass and damping[J]. Journal of Pressure Vessel Technology, 1989, 111(4): 466-477. doi: 10.1115/1.3265705
    [9] PAIDOUSSIS M P, MAVRIPLIS D, PRICE S J. A potential-flow theory for the dynamics of cylinder arrays in cross-flow[J]. Journal of Fluid Mechanics, 1984, 146: 227-252. doi: 10.1017/S002211208400183X
    [10] CHEN S S, CHUNG H. Design guide for calculating hydrodynamic mass. Part I. Circular cylindrical structures: ANL-CT-76-45[R]. Argonne: Argonne National Lab. , 1976.
    [11] FRITZ R J. The effect of liquids on the dynamic motions of immersed solids[J]. Journal of Engineering for Industry, 1972, 94(1): 167-173. doi: 10.1115/1.3428107
    [12] EVERSTINE G C. Finite element formulatons of structural acoustics problems[J]. Computers & Structures, 1997, 65(3): 307-321.
    [13] RODRIGUEZ C G, FLORES P, PIERART F G, et al. Capability of structural–acoustical fsi numerical model to predict natural frequencies of submerged structures with nearby rigid surfaces[J]. Computers & Fluids, 2012, 64: 117-126.
    [14] RAWAT A, MATSAGAR V, NAGPAL A K. Finite element simulation of cylindrical liquid storage tank under tri-directional components of earthquake[J]. Journal of Structural Engineering, 2015, 42(1): 28-39.
    [15] ENERGOATOMIZDAT. Standards for strength calculations for equipment and pipelines in nuclear power facilities: PNAE G-7-002-86[S]. Moscow: Energoatomizdat, 1989: 510-515.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  56
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2023-05-12
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回