Experimental Study on Mechanical Performance of Nuclear Containment Truncated Cone Region
-
摘要: 核安全壳的壳体与筏板基础交界处(截锥体区域)形状不规则且受力复杂,研究该区域的受力机理对掌握整个安全壳的结构性能十分重要。以核安全壳截锥体区域为研究对象,在利用ABAQUS软件计算分析得到合理的截锥体缩尺模型的基础上,制作了缩尺比例1∶3的2个试件,分别进行无内压和有内压2种荷载工况下的静力试验。试验结果表明:试件1(无内压)破坏方式为弯剪破坏,发生27.7 mm水平位移;试件2(有内压)破坏方式为剪切破坏,发生32.6 mm水平位移。两试件主要裂缝区均为内侧底板与截锥体区域交界处,钢筋屈服位置主要出现在上部底板长度方向钢筋处,截锥体外侧竖向钢筋未充分发挥作用。相关结果可指导结构配筋优化工作。Abstract: The truncated cone area of nuclear containment (the junction of shell and raft foundation) has irregular shape and complex stress. Studying the stress mechanism of this area is important to master the structural performance of the whole containment. In this study, the truncated cone area was taken as the object of study. On the basis of the scale model of truncated cone area obtained by ABAQUS, two specimens with scale ratio of 1∶3 were made to carry out static tests under two load conditions: with and without internal pressure. The test results show that the failure mode of specimen 1 (without internal pressure) is bending shear failure with horizontal displacement of 27.7mm, while the failure mode of specimen 2 (with internal pressure) is shear failure with horizontal displacement of 32.6mm. The main crack zone of the two specimens is the junction of the inner bottom plate and the truncated cone. The yield position of the reinforcement mainly appears at the upper transverse reinforcement, while the vertical reinforcement on the outside of the cone is not fully functional. The results can guide the optimization of structural reinforcement.
-
Key words:
- Nuclear containment /
- Truncated cone /
- Scale model /
- Static test
-
表 1 试件荷载情况
Table 1. Load Condition of Specimen
工况 荷载名称 荷载大小/kN 作用方向 1 F1 1100 竖直向下 F2 370 竖直向下 F3 180 水平,指向构件 F4 3600 水平,指向构件 2 $ F_1' $ 60 竖直向上 $F'_2 $ 370 竖直向下 $ F_3' $ 70 水平,指向构件 F4 1800 水平,指向构件 表 2 钢筋材料性能试验参数
Table 2. Parameters for Performance Test of Reinforcement Materials
公称直
径/mm屈服强度
平均值/MPa极限抗拉强度
平均值/MPa断后伸长
率/%16 436.7 636.9 20.5 14 467.9 639.1 20.7 12 486.7 692.7 21.2 10 489.3 697.6 27.7 表 3 工况1荷载F4加载制度表
Table 3. Loading System of Load F4 under Condition 1
级数 单级荷载/kN 单级停留时间/min 1~6 300 5 7~18 150 5 表 4 工况2荷载F4加载制度表
Table 4. Loading System of Load F4 under Condition 2
级数 单级荷载/kN 单级停留时间/min 1 300 5 2~11 150 5 -
[1] 薛志成,潘长风,裴强,等. 预应力模拟方法对核安全壳结构动力特性的影响[J]. 沈阳工业大学学报,2022, 44(1): 102-108. doi: 10.7688/j.issn.1000-1646.2022.01.18 [2] 贡金鑫,冯治斌,郭书恒,等. 美国核电厂混凝土安全壳规范抗剪设计方法的演变[J]. 建筑结构,2018, 48(16): 1-8. doi: 10.19701/j.jzjg.2018.16.001 [3] 蓝天云,董占发,李忠诚,等. 压水堆核电站预应力安全壳三维仿真设计与应用[J]. 建筑结构,2018, 48(16): 102-106. doi: 10.19701/j.jzjg.2018.16.016 [4] 张心斌,林松涛,陈增元,等. 先进核电厂安全壳结构模型试验研究[J]. 工业建筑,2001, 31(9): 33-35. doi: 10.3321/j.issn:1000-8993.2001.09.011 [5] 王晓磊,侯钢领,吕大刚. 某核电站安全壳1:15模型振动台试验[J]. 工程力学,2014, 31(S1): 249-252,264. [6] 刘晶波,王菲,孙运轮. 大飞机撞击钢筋混凝土核安全壳模型试验研究[J]. 建筑结构学报,2022, 43(8): 185-189. doi: 10.14006/j.jzjgxb.2021.0185 [7] DAMERON R A, RASHID Y R, HESSHEIMER M F. Posttest analysis of a 1∶4-scale prestressed concrete containment vessel model[C]//Proceedings of the 17th International Conference on Structural Mechanics in Reactor Technology. Prague, Czech Republic: INIS, 2003: 1525-1532. [8] COSTELLO J F, LUDWIGSEN J S, LUK V K, et al. Predictability of steel containment response near failure[C]//Proceedings of the 8th International Conference on Nuclear Engineering. Baltimore: Sandia National Lab, 2000: 149-160. [9] TARALLO F, RAMBACH J M, BOURASSEAU N, et al. VTT IMPACT program-First phase: lessons gained by IRSN[C]//Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology. Espoo, Finland: IASMiRT, 2009: 1370-1379. [10] TARALLO F, RAMBACH J M. Some lessons learned from tests of VTT impact program, Phases I and II[C]//Proceedings of the 22nd Conference on Structural Mechanics in Reactor Technology. San Francisco: IASMiRT, 2013: 605-613. [11] BORGERHOFF M, ZINN R, SCHNEEBERGER C. Conclusions from combined bending and punching tests for aircraft impact design[C]//Proceedings of the 22nd Conference on Structural Mechanics in Reactor Technology. San Francisco: IASMiRT, 2013: 196-204. [12] SCHNEEBERGER C, BORGERHOFF M, STANGENBERG F, et al. Analysis of vibration propagation and damping tests of reinforced concrete structures within IMPACT III Project[C]//Proceedings of the 9th International Conference on Structural Dynamics. Porto, Portugal, 2014: 3525-3532. [13] VEPSÄ A, CALONIUS K, SAARENHEIMO A, et al. Soft impact testing of a wall-floor-wall reinforced concrete structure[J]. Nuclear Engineering and Design, 2017, 311: 86-103. doi: 10.1016/j.nucengdes.2016.10.052 [14] BURDETTE E G, ROGERS L W. Liner anchorage tests[J]. Journal of the Structural Division, 1975, 101(7): 1455-1468. doi: 10.1061/JSDEAG.0004099 [15] BURDETTE E G, GAHINIC B. Containment liner anchor load tests[J]. Journal of Structural Engineering, 1984, 110(1): 1-9. doi: 10.1061/(ASCE)0733-9445(1984)110:1(1)